Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

19.08.2019 | Ausgabe 11/2019

The Journal of Supercomputing 11/2019

Host load prediction in cloud computing using Long Short-Term Memory Encoder–Decoder

Zeitschrift:
The Journal of Supercomputing > Ausgabe 11/2019
Autoren:
Hoang Minh Nguyen, Gaurav Kalra, Daeyoung Kim
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Cloud computing has been developed as a means to allocate resources efficiently while maintaining service-level agreements by providing on-demand resource allocation. As reactive strategies cause delays in the allocation of resources, proactive approaches that use predictions are necessary. However, due to high variance of cloud host load compared to that of grid computing, providing accurate predictions is still a challenge. Thus, in this paper we have proposed a prediction method based on Long Short-Term Memory Encoder–Decoder (LSTM-ED) to predict both mean load over consecutive intervals and actual load multi-step ahead. Our LSTM-ED-based approach improves the memory capability of LSTM, which is used in the recent previous work, by building an internal representation of time series data. In order to evaluate our approach, we have conducted experiments using a 1-month trace of a Google data centre with more than twelve thousand machines. Our experimental results show that while multi-layer LSTM causes overfitting and decrease in accuracy compared to single-layer LSTM, which was used in the previous work, our LSTM-ED-based approach successfully achieves higher accuracy than other previous models, including the recent LSTM one.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 11/2019

The Journal of Supercomputing 11/2019 Zur Ausgabe

Premium Partner

    Bildnachweise