Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Physics of Metals and Metallography 14/2021

18.08.2021 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Hot Compressive Deformation Behavior and Microstructure of LZ31 Magnesium–Lithium Alloy

verfasst von: J. W. Liu, M. H. Dai, S. Q. Lu, Y. Li

Erschienen in: Physics of Metals and Metallography | Ausgabe 14/2021

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

To obtain the best hot deformation parameters of magnesium–lithium alloy and to provide the evidence for formulating hot deformation process, the deformation behavior of LZ31 magnesium–lithium alloy under hot compression was studied firstly. Then, the constitutive equation was established and the related microstructure evolution in deformation process was investigated. The results show that the alloy appears hardening and softening during the hot deformation process. After the flow stress reaches peak value, the softening is greater than hardening, and the deformation comes in the stable flow state. The peak stress decreases with the increase of temperature (the opposite situation for strain rate). The hot deformation activation energy of LZ31 alloy is Q = 149.85 kJ/mol. For the microstructure evolution, when the temperature is lower and the strain rate is higher, the softening mechanism of the alloy is dynamic recovery and dynamic recrystallization. Meanwhile, significant slip steps can be observed at the grain boundaries, which means the main deformation mechanism is dislocation slip. When the temperature gradually increases and the strain rate gradually decreases, the dynamic recovery disappears, and the main softening mechanism is continuous dynamic recrystallization.
Literatur
1.
Zurück zum Zitat W. A. Counts, M. Friák, D. Raabe, and J. Neugebauer, “Using ab initio calculations in designing bcc Mg–Li alloys for ultra-lightweight applications,” Acta. Mater. 57, 69–76 (2009). CrossRef W. A. Counts, M. Friák, D. Raabe, and J. Neugebauer, “Using ab initio calculations in designing bcc Mg–Li alloys for ultra-lightweight applications,” Acta. Mater. 57, 69–76 (2009). CrossRef
2.
Zurück zum Zitat K. Feng, D. M. Li, C. D. He, and X. K. Chen, “Research progress in ultra light magnesium-lithium alloys for aerospace applications,” Spec. Cast. Nonferrous Alloys 37, 140–144 (2017). K. Feng, D. M. Li, C. D. He, and X. K. Chen, “Research progress in ultra light magnesium-lithium alloys for aerospace applications,” Spec. Cast. Nonferrous Alloys 37, 140–144 (2017).
3.
Zurück zum Zitat B. L. Mordike, and T. Ebert, “Magnesium Properties-applications-potential,” Mater. Sci. Eng., A 302, 37–45 (2001). CrossRef B. L. Mordike, and T. Ebert, “Magnesium Properties-applications-potential,” Mater. Sci. Eng., A 302, 37–45 (2001). CrossRef
4.
Zurück zum Zitat Magnesium Alloys and Technologies, Ed. by K. U. Kainer (Wiley, Chichester, 2003), pp. 56–57. Magnesium Alloys and Technologies, Ed. by K. U. Kainer (Wiley, Chichester, 2003), pp. 56–57.
5.
Zurück zum Zitat T. Liu, W. Zhang, S. D. Wu, C. B. Jiang, S. X. Li, and Y. B. Xu, “Mechanical properties of a two-phase alloy Mg–8% Li–1% Al processed by equal channel angular pressing,” Mater. Sci. Eng., A 360, 345–349 (2003). CrossRef T. Liu, W. Zhang, S. D. Wu, C. B. Jiang, S. X. Li, and Y. B. Xu, “Mechanical properties of a two-phase alloy Mg–8% Li–1% Al processed by equal channel angular pressing,” Mater. Sci. Eng., A 360, 345–349 (2003). CrossRef
6.
Zurück zum Zitat J. W. Liu, Z. G. Zhao, and S. Q. Lu, “Microstructure evolution and constitutive equation for the hot deformation of LZ91 Mg alloy,” Catal. Today 318, 119–125 (2018). CrossRef J. W. Liu, Z. G. Zhao, and S. Q. Lu, “Microstructure evolution and constitutive equation for the hot deformation of LZ91 Mg alloy,” Catal. Today 318, 119–125 (2018). CrossRef
7.
Zurück zum Zitat L. Zhao and P. Zhao, “Effect of heat treatment on microstructure and mechanical properties of Mg–7.28Li–8.02Y alloy,” Heat Treat. Metall. 33, 37–40 (2008). L. Zhao and P. Zhao, “Effect of heat treatment on microstructure and mechanical properties of Mg–7.28Li–8.02Y alloy,” Heat Treat. Metall. 33, 37–40 (2008).
8.
Zurück zum Zitat S. K. Wu, S. H. Chang, W. L. Tsia, and H. Y. Bor, “Low-frequency damping properties of as-extruded Mg–11.2Li–0.95Al–0.43Zn magnesium alloy,” Mater. Sci. Eng., A 528, 6020–6025 (2011). CrossRef S. K. Wu, S. H. Chang, W. L. Tsia, and H. Y. Bor, “Low-frequency damping properties of as-extruded Mg–11.2Li–0.95Al–0.43Zn magnesium alloy,” Mater. Sci. Eng., A 528, 6020–6025 (2011). CrossRef
9.
Zurück zum Zitat Y. Zhang, Z. S. Ren, and G. Y. Yang, “Microstructure and melting process of magnesium-lithium alloy,” Nonferrous Met. Process. 36, 14–16 (2007). Y. Zhang, Z. S. Ren, and G. Y. Yang, “Microstructure and melting process of magnesium-lithium alloy,” Nonferrous Met. Process. 36, 14–16 (2007).
10.
Zurück zum Zitat H. J. Mcqueen, “Metal forming: Industrial, mechanical computational and microstructural,” J. Mater Process. Technol. 37, 3–36 (1993). CrossRef H. J. Mcqueen, “Metal forming: Industrial, mechanical computational and microstructural,” J. Mater Process. Technol. 37, 3–36 (1993). CrossRef
11.
Zurück zum Zitat X. M. Chen, Y. C. Lin, D. X. Wen, J. L. Zhang, and M. He, “Dynamic recrystallization behavior of a typical nickel-based superalloy during hot deformation,” Mater. Des. 57, 568–577 (2014). CrossRef X. M. Chen, Y. C. Lin, D. X. Wen, J. L. Zhang, and M. He, “Dynamic recrystallization behavior of a typical nickel-based superalloy during hot deformation,” Mater. Des. 57, 568–577 (2014). CrossRef
12.
Zurück zum Zitat Y. C. Lin, D. G. He, J. Chen, D. D. Chen, J. Huang, Y. Tang, and M. S. Chen, “Microstructural evolution and support vector regression model for an aged Ni-based superalloy during two-stage hot forming with stepped strain rates,” Mater. Des. 154, 51–62 (2018). CrossRef Y. C. Lin, D. G. He, J. Chen, D. D. Chen, J. Huang, Y. Tang, and M. S. Chen, “Microstructural evolution and support vector regression model for an aged Ni-based superalloy during two-stage hot forming with stepped strain rates,” Mater. Des. 154, 51–62 (2018). CrossRef
13.
Zurück zum Zitat Y. C. Lin, X. Y. Wu, X. M. Chen, J. Chen, D. X. Wen, J. L. Zhang, and L. T. Li, “EBSD study of a hot deformed nickel-based superalloy,” J. Alloys Compd. 640, 101–113 (2015). CrossRef Y. C. Lin, X. Y. Wu, X. M. Chen, J. Chen, D. X. Wen, J. L. Zhang, and L. T. Li, “EBSD study of a hot deformed nickel-based superalloy,” J. Alloys Compd. 640, 101–113 (2015). CrossRef
14.
Zurück zum Zitat S. E. Ion, F. J. Humphreys, and S. H. White, “Dynamic recrystallization and the development of microstructure during the high temperature deformation of magnesium,” Acta Metall. 30, 1909–1919 (1982). CrossRef S. E. Ion, F. J. Humphreys, and S. H. White, “Dynamic recrystallization and the development of microstructure during the high temperature deformation of magnesium,” Acta Metall. 30, 1909–1919 (1982). CrossRef
15.
Zurück zum Zitat C. M. Liu, Z. J. Liu, X. R. Zhu, and Z. T. Zhou, “Progress in dynamic recrystallization of magnesium and magnesium alloys,” Chin. J. Nonferrous Met. 16, 1–12 (2006). CrossRef C. M. Liu, Z. J. Liu, X. R. Zhu, and Z. T. Zhou, “Progress in dynamic recrystallization of magnesium and magnesium alloys,” Chin. J. Nonferrous Met. 16, 1–12 (2006). CrossRef
16.
Zurück zum Zitat C. Zener and J. H. Hollomon, “Effect of strain rate upon plastic flow of steel,” J. Appl. Phys. 15, 22–32 (1944). CrossRef C. Zener and J. H. Hollomon, “Effect of strain rate upon plastic flow of steel,” J. Appl. Phys. 15, 22–32 (1944). CrossRef
17.
Zurück zum Zitat Y. Zhang, H. L. Sun, A. A. Volinsky, B. J. Wang, B. H. Tian, Z. Chai, Y. Liu, and K. X. Song, “Small Y addition effects on hot deformation behavior of copper-matrix alloys,” Adv. Eng. Mater. 19, 1700197 (2017). CrossRef Y. Zhang, H. L. Sun, A. A. Volinsky, B. J. Wang, B. H. Tian, Z. Chai, Y. Liu, and K. X. Song, “Small Y addition effects on hot deformation behavior of copper-matrix alloys,” Adv. Eng. Mater. 19, 1700197 (2017). CrossRef
18.
Zurück zum Zitat J. H. Kim, D. Kim, Y. S. Lee, M. G. Lee, K. Chung, H. Y. Kim, and R. H. Wagoner, “A temperature-dependent elasto-plastic constitutive model for magnesium alloy AZ31 sheets,” Int. J. Plast. 50, 66–93 (2013). CrossRef J. H. Kim, D. Kim, Y. S. Lee, M. G. Lee, K. Chung, H. Y. Kim, and R. H. Wagoner, “A temperature-dependent elasto-plastic constitutive model for magnesium alloy AZ31 sheets,” Int. J. Plast. 50, 66–93 (2013). CrossRef
19.
Zurück zum Zitat G. B. Wei, X. D. Peng, F. P. Hu, A. Hadadzadeh, Y. Yang, W. D. Xie, and M. A. Wells, “Deformation behavior and constitutive model for dual-phase Mg–Li alloy at elevated temperatures,” Trans. Nonferrous Met. Soc. China. 26, 508–518 (2016). CrossRef G. B. Wei, X. D. Peng, F. P. Hu, A. Hadadzadeh, Y. Yang, W. D. Xie, and M. A. Wells, “Deformation behavior and constitutive model for dual-phase Mg–Li alloy at elevated temperatures,” Trans. Nonferrous Met. Soc. China. 26, 508–518 (2016). CrossRef
Metadaten
Titel
Hot Compressive Deformation Behavior and Microstructure of LZ31 Magnesium–Lithium Alloy
verfasst von
J. W. Liu
M. H. Dai
S. Q. Lu
Y. Li
Publikationsdatum
18.08.2021
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 14/2021
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21140155

Weitere Artikel der Ausgabe 14/2021

Physics of Metals and Metallography 14/2021 Zur Ausgabe