Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 10/2019

23.09.2019

Hot Deformation and Processing Maps of B4C/6061Al Nanocomposites Fabricated by Spark Plasma Sintering

verfasst von: Ruifeng Liu, Wenxian Wang, Hongsheng Chen, Yuyang Zhang, Shipeng Wan

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 10/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We developed 3 vol.% B4C/6061Al nanocomposites by spark plasma sintering. We then characterized their flow and hot deformation behaviors using isothermal compression tests at deformation temperatures of 673-823 K and strain rates of 0.001-1 s−1. Results indicated that their steady flow characteristic can be described by the Zener–Hollomon parameter (Z) as a hyperbolic-sine function of flow stress. Based on pinning effect from B4C nanoparticles, the estimated activation energy was calculated to be 274.80 kJ/mol. At the unstable deformation condition (723 K/1 s−1) with high Z, flow localization appeared; the main softening mechanisms involved are dynamic recovery and dynamic recrystallization (DRX). At the stable deformation condition (823 K/0.001 s−1) with low Z, adequate DRX occurred. Based on the processing map and microstructure evolution, the optimum hot working conditions for B4C/6061Al nanocomposites were determined to be a deformation temperature of 773-823 K and a strain rate of 0.001-0.003 s−1. These working conditions were verified by a hot extrusion test.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat P.C. Kang et al., Phase Identification of Al-B4C Ceramic Composites Synthesized by Reaction Hot-Press Sintering, Int. J. Refract. Met. Hard Mater., 2010, 28, p 297–300 P.C. Kang et al., Phase Identification of Al-B4C Ceramic Composites Synthesized by Reaction Hot-Press Sintering, Int. J. Refract. Met. Hard Mater., 2010, 28, p 297–300
2.
Zurück zum Zitat C.D. Wu et al., Effect of Plasma Activated Sintering Parameters on Microstructure and Mechanical Properties of Al-7075/B4C Composites, J. Alloys Compd., 2014, 615, p 276–282 C.D. Wu et al., Effect of Plasma Activated Sintering Parameters on Microstructure and Mechanical Properties of Al-7075/B4C Composites, J. Alloys Compd., 2014, 615, p 276–282
3.
Zurück zum Zitat M. Narimani et al., Evaluation of the Microstructure and Wear Behaviour of AA6063-B4C/TiB2 Mono and Hybrid Composite Layers Produced by Friction Stir Processing, Surf. Coat. Technol., 2016, 285, p 1–10 M. Narimani et al., Evaluation of the Microstructure and Wear Behaviour of AA6063-B4C/TiB2 Mono and Hybrid Composite Layers Produced by Friction Stir Processing, Surf. Coat. Technol., 2016, 285, p 1–10
4.
Zurück zum Zitat X.X. Zhang et al., Determination of Macroscopic and Microscopic Residual Stresses in Friction Stir Welded Metal Matrix Composites via Neutron Diffraction, Acta Mater., 2015, 87, p 161–173 X.X. Zhang et al., Determination of Macroscopic and Microscopic Residual Stresses in Friction Stir Welded Metal Matrix Composites via Neutron Diffraction, Acta Mater., 2015, 87, p 161–173
5.
Zurück zum Zitat K.K. Ma et al., Coupling of Dislocations and Precipitates: Impact on the Mechanical Behavior of Ultrafine Grained Al-Zn-Mg Alloys, Acta Mater., 2016, 103, p 153–164 K.K. Ma et al., Coupling of Dislocations and Precipitates: Impact on the Mechanical Behavior of Ultrafine Grained Al-Zn-Mg Alloys, Acta Mater., 2016, 103, p 153–164
6.
Zurück zum Zitat S. Bathula et al., Microstructural Features and Mechanical Properties of Al 5083/SiCp Metal Matrix Nanocomposites Produced by High Energy Ball Milling and Spark Plasma Sintering, Mater. Sci. Eng. A, 2012, 545, p 97–102 S. Bathula et al., Microstructural Features and Mechanical Properties of Al 5083/SiCp Metal Matrix Nanocomposites Produced by High Energy Ball Milling and Spark Plasma Sintering, Mater. Sci. Eng. A, 2012, 545, p 97–102
7.
Zurück zum Zitat K.M. Shorowordi et al., Microstructure and Interface Characteristics of B4C, SiC and Al2O3 Reinforced Al Matrix Composites: A Comparative Study, J. Mater. Process. Technol., 2003, 3, p 738–743 K.M. Shorowordi et al., Microstructure and Interface Characteristics of B4C, SiC and Al2O3 Reinforced Al Matrix Composites: A Comparative Study, J. Mater. Process. Technol., 2003, 3, p 738–743
8.
Zurück zum Zitat V. Senthilkumar et al., Analysis of Hot Deformation Behavior of Al5083-TiC Nanocomposite Using Constitutive and Dynamic Material Models, Mater. Des., 2012, 37, p 102–110 V. Senthilkumar et al., Analysis of Hot Deformation Behavior of Al5083-TiC Nanocomposite Using Constitutive and Dynamic Material Models, Mater. Des., 2012, 37, p 102–110
9.
Zurück zum Zitat K. Biswas et al., On the Densification Mechanisms and Properties of Cu-Pb and Cu-Pb-TiB2 Nanocomposites Densified Using Spark Plasma Sintering, Scr. Mater., 2013, 69, p 122–126 K. Biswas et al., On the Densification Mechanisms and Properties of Cu-Pb and Cu-Pb-TiB2 Nanocomposites Densified Using Spark Plasma Sintering, Scr. Mater., 2013, 69, p 122–126
10.
Zurück zum Zitat H.S. Chen et al., The Design, Microstructure and Mechanical Properties of B4C/6061Al Neutron Absorber Composites Fabricated by SPS, Mater. Des., 2016, 94, p 360–367 H.S. Chen et al., The Design, Microstructure and Mechanical Properties of B4C/6061Al Neutron Absorber Composites Fabricated by SPS, Mater. Des., 2016, 94, p 360–367
11.
Zurück zum Zitat H.S. Chen et al., Microstructure and Mechanical Properties of B4C/6061Al Laminar Composites Fabricated by Power Metallurgy, Vacuum, 2017, 143, p 363–370 H.S. Chen et al., Microstructure and Mechanical Properties of B4C/6061Al Laminar Composites Fabricated by Power Metallurgy, Vacuum, 2017, 143, p 363–370
12.
Zurück zum Zitat R.F. Liu et al., Microstructure Evolution and Mechanical Properties of Micro-/Nano-Bimodal Size B4C Particles Reinforced Aluminum Matrix Composites Prepared by SPS Followed by HER, Vacuum, 2018, 151, p 39–50 R.F. Liu et al., Microstructure Evolution and Mechanical Properties of Micro-/Nano-Bimodal Size B4C Particles Reinforced Aluminum Matrix Composites Prepared by SPS Followed by HER, Vacuum, 2018, 151, p 39–50
13.
Zurück zum Zitat H.S. Chen et al., The Design, Microstructure and Tensile Properties of B4C Particulate Reinforced 6061Al Neutron Absorber Composites, J. Alloys Compd., 2015, 632, p 23–29 H.S. Chen et al., The Design, Microstructure and Tensile Properties of B4C Particulate Reinforced 6061Al Neutron Absorber Composites, J. Alloys Compd., 2015, 632, p 23–29
14.
Zurück zum Zitat A. Mazahery et al., Development of High-Performance A356/Nano-Al2O3 Composites, Mater. Sci. Eng. A, 2009, 518, p 61–64 A. Mazahery et al., Development of High-Performance A356/Nano-Al2O3 Composites, Mater. Sci. Eng. A, 2009, 518, p 61–64
15.
Zurück zum Zitat Y. Yang et al., Processing map of Al2O3, Particulate Reinforced Al Alloy Matrix Composites, Mater. Sci. Eng. A, 2012, 558, p 112–118 Y. Yang et al., Processing map of Al2O3, Particulate Reinforced Al Alloy Matrix Composites, Mater. Sci. Eng. A, 2012, 558, p 112–118
16.
Zurück zum Zitat B. Liu et al., Compressive Behavior of High Particle Content B4C/Al Composite at Elevated Temperature, Trans. Nonferrous Met. Soc. China, 2013, 23, p 2826–2832 B. Liu et al., Compressive Behavior of High Particle Content B4C/Al Composite at Elevated Temperature, Trans. Nonferrous Met. Soc. China, 2013, 23, p 2826–2832
17.
Zurück zum Zitat X.G. Zheng et al., Healing Process of Casting Pores in a Ni-Based Super Alloy by Hot Isostatic Pressing, J. Mater. Sci. Technol., 2015, 31, p 1151–1157 X.G. Zheng et al., Healing Process of Casting Pores in a Ni-Based Super Alloy by Hot Isostatic Pressing, J. Mater. Sci. Technol., 2015, 31, p 1151–1157
18.
Zurück zum Zitat P. Zhang et al., The Design, Fabrication and Properties of B4C/Al Neutron Absorbers, J. Nucl. Mater., 2013, 437, p 350–358 P. Zhang et al., The Design, Fabrication and Properties of B4C/Al Neutron Absorbers, J. Nucl. Mater., 2013, 437, p 350–358
19.
Zurück zum Zitat R. Vintila et al., Synthesis and Consolidation via Spark Plasma Sintering of Nanostructured Al-5356/B4C Composite, Mater. Sci. Eng. A, 2011, 528, p 4395–4407 R. Vintila et al., Synthesis and Consolidation via Spark Plasma Sintering of Nanostructured Al-5356/B4C Composite, Mater. Sci. Eng. A, 2011, 528, p 4395–4407
20.
Zurück zum Zitat J. Liu et al., Microstructure and Mechanical Properties of a Spark Plasma Sintered Fe-11Cr-2.3B-6Al-15Mn Alloy, Vacuum, 2018, 150, p 49–57 J. Liu et al., Microstructure and Mechanical Properties of a Spark Plasma Sintered Fe-11Cr-2.3B-6Al-15Mn Alloy, Vacuum, 2018, 150, p 49–57
21.
Zurück zum Zitat F. Ogawa et al., Microstructure Evolution During Fabrication and Microstructure-Property Relationships in Vapour-Grown Carbon Nanofibre-Reinforced Aluminium Matrix Composites Fabricated via Powder Metallurgy, Compos. Part A, 2015, 71, p 84–94 F. Ogawa et al., Microstructure Evolution During Fabrication and Microstructure-Property Relationships in Vapour-Grown Carbon Nanofibre-Reinforced Aluminium Matrix Composites Fabricated via Powder Metallurgy, Compos. Part A, 2015, 71, p 84–94
22.
Zurück zum Zitat Z.H. Zhang et al., The Sintering Mechanism in Spark Plasma Sintering-Proof of the Occurrence of Spark Discharge, Scr. Mater., 2014, 81, p 56–59 Z.H. Zhang et al., The Sintering Mechanism in Spark Plasma Sintering-Proof of the Occurrence of Spark Discharge, Scr. Mater., 2014, 81, p 56–59
23.
Zurück zum Zitat Y.V.R.K. Prasad et al., Hot Workability and Deformation Mechanisms in Mg/Nano-Al2O3 Composite, Compos. Sci. Technol., 2009, 69, p 1070–1076 Y.V.R.K. Prasad et al., Hot Workability and Deformation Mechanisms in Mg/Nano-Al2O3 Composite, Compos. Sci. Technol., 2009, 69, p 1070–1076
24.
Zurück zum Zitat H.T. Hu et al., High Temperature Mechanical Properties of As-Extruded TiBw/Ti60 Composites with Ellipsoid Network Architecture, J. Alloys Compd., 2016, 688, p 958–966 H.T. Hu et al., High Temperature Mechanical Properties of As-Extruded TiBw/Ti60 Composites with Ellipsoid Network Architecture, J. Alloys Compd., 2016, 688, p 958–966
25.
Zurück zum Zitat C. Wu et al., Influence of Particle Size and Spatial Distribution of B4C Reinforcement on the Microstructure and Mechanical Behavior of Precipitation Strengthened Al Alloy Matrix Composites, Mater. Sci. Eng. A, 2016, 675, p 421–430 C. Wu et al., Influence of Particle Size and Spatial Distribution of B4C Reinforcement on the Microstructure and Mechanical Behavior of Precipitation Strengthened Al Alloy Matrix Composites, Mater. Sci. Eng. A, 2016, 675, p 421–430
26.
Zurück zum Zitat W. Zhang et al., Preparation of TiBw/Ti-6Al-4V Composite with an Inhomogeneous Reinforced Structure by a Canned Hot Extrusion Process, J. Alloys Compd., 2016, 669, p 79–90 W. Zhang et al., Preparation of TiBw/Ti-6Al-4V Composite with an Inhomogeneous Reinforced Structure by a Canned Hot Extrusion Process, J. Alloys Compd., 2016, 669, p 79–90
27.
Zurück zum Zitat Y.L. Li et al., Hot Deformation Behaviors and Processing Maps of B4C/Al6061 Neutron Absorber Composites, Mater. Charact., 2017, 124, p 107–116 Y.L. Li et al., Hot Deformation Behaviors and Processing Maps of B4C/Al6061 Neutron Absorber Composites, Mater. Charact., 2017, 124, p 107–116
28.
Zurück zum Zitat N.P. Jin et al., Hot Deformation Behavior of 7150 Aluminum Alloy During Compression at Elevated Temperature, Mater. Charact., 2009, 60, p 530–536 N.P. Jin et al., Hot Deformation Behavior of 7150 Aluminum Alloy During Compression at Elevated Temperature, Mater. Charact., 2009, 60, p 530–536
29.
Zurück zum Zitat H. Wu et al., Hot Deformation Behavior and Processing Map of a New Type Al-Zn-Mg-Er-Zr Alloy, J. Alloys Compd., 2016, 685, p 869–880 H. Wu et al., Hot Deformation Behavior and Processing Map of a New Type Al-Zn-Mg-Er-Zr Alloy, J. Alloys Compd., 2016, 685, p 869–880
30.
Zurück zum Zitat K.K. Wang et al., Hot Deformation Behavior and Microstructural Evolution of Particulate-Reinforced AA6061/B4C Composite During Compression at Elevated Temperature, Mater. Sci. Eng. A, 2017, 696, p 248–256 K.K. Wang et al., Hot Deformation Behavior and Microstructural Evolution of Particulate-Reinforced AA6061/B4C Composite During Compression at Elevated Temperature, Mater. Sci. Eng. A, 2017, 696, p 248–256
31.
Zurück zum Zitat C.M. Sellars et al., On the Mechanism of Hot Deformation, Acta Mater., 1966, 14, p 1136–1138 C.M. Sellars et al., On the Mechanism of Hot Deformation, Acta Mater., 1966, 14, p 1136–1138
32.
Zurück zum Zitat C. Zener et al., Effect of Strain Rate upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15, p 22–32 C. Zener et al., Effect of Strain Rate upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15, p 22–32
33.
Zurück zum Zitat H.C. Liao et al., Hot Deformation Behavior and Processing Map of Al-Si-Mg Alloys Containing Different Amount of Silicon Based on Gleebe-3500 Hot Compression Simulation, Mater. Des., 2015, 65, p 1091–1099 H.C. Liao et al., Hot Deformation Behavior and Processing Map of Al-Si-Mg Alloys Containing Different Amount of Silicon Based on Gleebe-3500 Hot Compression Simulation, Mater. Des., 2015, 65, p 1091–1099
34.
Zurück zum Zitat S.S. Zhou et al., Hot Deformation Behavior and Workability Characteristics of Bimodal Size SiCp/AZ91 Magnesium Matrix Composite with Processing Map, Mater. Des., 2014, 64, p 177–184 S.S. Zhou et al., Hot Deformation Behavior and Workability Characteristics of Bimodal Size SiCp/AZ91 Magnesium Matrix Composite with Processing Map, Mater. Des., 2014, 64, p 177–184
35.
Zurück zum Zitat V. Senthilkumar et al., Application of Constitutive and Neural Network Models for Prediction of High Temperature Flow Behavior of Al/Mg Based Nanocomposite, Trans. Nonferrous Met. Soc. China, 2013, 23, p 1737–1750 V. Senthilkumar et al., Application of Constitutive and Neural Network Models for Prediction of High Temperature Flow Behavior of Al/Mg Based Nanocomposite, Trans. Nonferrous Met. Soc. China, 2013, 23, p 1737–1750
36.
Zurück zum Zitat H.R. Ezatpour et al., The Effect of Al2O3-Nanoparticles as the Reinforcement Additive on the Hot Deformation Behavior of 7075 Aluminum Alloy, Mater. Des., 2015, 88, p 1049–1056 H.R. Ezatpour et al., The Effect of Al2O3-Nanoparticles as the Reinforcement Additive on the Hot Deformation Behavior of 7075 Aluminum Alloy, Mater. Des., 2015, 88, p 1049–1056
37.
Zurück zum Zitat L. Saravanan et al., Investigations on the Hot Workability Characteristics and Deformation Mechanisms of Aluminium Alloy-Al2O3, Nanocomposite, Mater. Des., 2015, 79, p 6–14 L. Saravanan et al., Investigations on the Hot Workability Characteristics and Deformation Mechanisms of Aluminium Alloy-Al2O3, Nanocomposite, Mater. Des., 2015, 79, p 6–14
38.
Zurück zum Zitat M. Rajamuthamilselvan et al., Processing Map for Hot Working of SiCp/7075 Al Composites, Trans. Nonferrous Met. Soc. China, 2010, 20, p 668–674 M. Rajamuthamilselvan et al., Processing Map for Hot Working of SiCp/7075 Al Composites, Trans. Nonferrous Met. Soc. China, 2010, 20, p 668–674
39.
Zurück zum Zitat Y. Zhang et al., Hot Deformation Characteristics and Processing Maps of the Cu-Cr-Zr-Ag Alloy, J. Mater. Eng. Perform., 2016, 25, p 1191–1198 Y. Zhang et al., Hot Deformation Characteristics and Processing Maps of the Cu-Cr-Zr-Ag Alloy, J. Mater. Eng. Perform., 2016, 25, p 1191–1198
40.
Zurück zum Zitat P. Cavaliere et al., Hot Deformation and Processing Maps of a Particulate Reinforced 2618/Al2O3/20p Metal Matrix Composite, Compos. Sci. Technol., 2004, 64, p 1287–1291 P. Cavaliere et al., Hot Deformation and Processing Maps of a Particulate Reinforced 2618/Al2O3/20p Metal Matrix Composite, Compos. Sci. Technol., 2004, 64, p 1287–1291
41.
Zurück zum Zitat X.P. Li et al., Hot Deformation Behaviour and Processing Maps of AA6061-10 vol.% SiC Composite Prepared by Spark Plasma Sintering, Sci. China. Technol. Sci., 2016, 59, p 980–988 X.P. Li et al., Hot Deformation Behaviour and Processing Maps of AA6061-10 vol.% SiC Composite Prepared by Spark Plasma Sintering, Sci. China. Technol. Sci., 2016, 59, p 980–988
Metadaten
Titel
Hot Deformation and Processing Maps of B4C/6061Al Nanocomposites Fabricated by Spark Plasma Sintering
verfasst von
Ruifeng Liu
Wenxian Wang
Hongsheng Chen
Yuyang Zhang
Shipeng Wan
Publikationsdatum
23.09.2019
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 10/2019
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-04336-0

Weitere Artikel der Ausgabe 10/2019

Journal of Materials Engineering and Performance 10/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.