Skip to main content
Erschienen in: Physics of Metals and Metallography 14/2021

18.08.2021 | STRENGTH AND PLASTICITY

Hot Deformation Behavior and Constitutive Modelling of a Medium-Carbon Structural Steel

verfasst von: Khalil Boroumand, Morteza Hadi, Reza Vafaei

Erschienen in: Physics of Metals and Metallography | Ausgabe 14/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The purpose of this study was to investigate the effects of temperature and strain rate on the hot deformation behavior of a medium-carbon structural steel. This steel is known as 30XΓCA steel in GOST standard and contains 0.3 wt % carbon. To investigate the hot deformation behavior of this steel, hot compression tests were performed on cylindrical samples in temperature ranges from 800 to 1000°C and strain ranges from 0.001 to 0.1 s–1. Microstructure of samples was characterized using optical microscopy (OM) and scanning electron microscopy (SEM). The true stress-strain curves of 30XΓCA steel obtained at various deformation conditions showed that the softening phenomenon based on recovery and dynamic recrystallization (DRX) occurred during hot deformation tests. The results indicated that the peak stress decreased with increasing temperature and decreasing strain rate. With increasing temperature from 800 to 1000°C, the peak stress decreased by 52, 60, and 38% at strain rates of 0.001, 0.01 and 0.1 s–1, respectively. According to the results, it can be claimed that the DRX was a dominate mechanism of softening in all deformation conditions. The changes of work hardening rate for 30XΓCA steel during hot deformation were analyzed to confirm the results. Accordingly, it was observed that critical stress for the initiation of DRX decreased with increasing temperature and decreasing strain rate. Furthermore, constitutive equations and activation energy of deformation for 30XΓCA steel were successfully determined. Based on the hyperbolic sine equation, the activation energy of hot deformation of 30XΓCA steel was 256.11 kJ/mol.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. Banabic, H.-J. Bunge, K. Pöhlandt, and A. Tekkaya, Formability of Metallic Materials Plastic Anisotropy, Formability Testing, Forming Limits (Springer-Verlag, New York, 2000).CrossRef D. Banabic, H.-J. Bunge, K. Pöhlandt, and A. Tekkaya, Formability of Metallic Materials Plastic Anisotropy, Formability Testing, Forming Limits (Springer-Verlag, New York, 2000).CrossRef
2.
Zurück zum Zitat F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena (Elsevier, Amsterdam, 2012). F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena (Elsevier, Amsterdam, 2012).
3.
Zurück zum Zitat B. Verlinden, J. Driver, I. Samajdar, and R. Doherty, Thermo-Mechanical Processing of Metallic Materials, 1st ed. (Elsevier, Amsterdam, 2007), B. Verlinden, J. Driver, I. Samajdar, and R. Doherty, Thermo-Mechanical Processing of Metallic Materials, 1st ed. (Elsevier, Amsterdam, 2007),
4.
Zurück zum Zitat M. Sadeghi, M. Hadi, O. Bayat, and H. Karimi, “Hot deformation of the Mn–Ni–Cr alloy during compression,” Iran. J. Mater. Sci. Eng. 17, 102–108 (2020). M. Sadeghi, M. Hadi, O. Bayat, and H. Karimi, “Hot deformation of the Mn–Ni–Cr alloy during compression,” Iran. J. Mater. Sci. Eng. 17, 102–108 (2020).
5.
Zurück zum Zitat M. Hadi and A. R. Kamali, “Investigation on hot workability and mechanical properties of modified IC-221M alloy,” J. Alloys Compd. 485, 204–208 (2009).CrossRef M. Hadi and A. R. Kamali, “Investigation on hot workability and mechanical properties of modified IC-221M alloy,” J. Alloys Compd. 485, 204–208 (2009).CrossRef
6.
Zurück zum Zitat S. Bao, G. Zhao, C. Yu, Q. Chang, C. Ye, and X. Mao, “Recrystallization behavior of a Nb-microalloyed steel during hot compression,” Appl. Math. Modell. 35, 3268–3275 (2011).CrossRef S. Bao, G. Zhao, C. Yu, Q. Chang, C. Ye, and X. Mao, “Recrystallization behavior of a Nb-microalloyed steel during hot compression,” Appl. Math. Modell. 35, 3268–3275 (2011).CrossRef
7.
Zurück zum Zitat J. Liu, S. Lu, Q. Yao, and Z. Zhao, “Constitutive equation for the hot deformation behavior of TiNiNb shape memory alloy,” Phys. Met. Metallogr. 120, 394–401 (2019).CrossRef J. Liu, S. Lu, Q. Yao, and Z. Zhao, “Constitutive equation for the hot deformation behavior of TiNiNb shape memory alloy,” Phys. Met. Metallogr. 120, 394–401 (2019).CrossRef
8.
Zurück zum Zitat Y. Huang, L. Liu, Z. Xiao, and S. Wang, “Hot deformation behavior of 6063 aluminum alloy studied using processing maps and microstructural analysis,” Phys. Met. Metallogr. 120, 1115–1125 (2019).CrossRef Y. Huang, L. Liu, Z. Xiao, and S. Wang, “Hot deformation behavior of 6063 aluminum alloy studied using processing maps and microstructural analysis,” Phys. Met. Metallogr. 120, 1115–1125 (2019).CrossRef
9.
Zurück zum Zitat A. Y. Churyumov, “Deformation and fracture of 13CrMoNbV ferritic-martensitic steel at elevated temperature,” Phys. Met. Metallogr. 120, 1228–1232 (2019).CrossRef A. Y. Churyumov, “Deformation and fracture of 13CrMoNbV ferritic-martensitic steel at elevated temperature,” Phys. Met. Metallogr. 120, 1228–1232 (2019).CrossRef
10.
Zurück zum Zitat T. Mizuguchi, M. Yamashita, D. Terada, and N. Tsuji, “Hot deformation and dynamic recrystallization behavior of medium carbon steel in austenite region,” Steel Res. Int. 80, 627–631 (2009). T. Mizuguchi, M. Yamashita, D. Terada, and N. Tsuji, “Hot deformation and dynamic recrystallization behavior of medium carbon steel in austenite region,” Steel Res. Int. 80, 627–631 (2009).
11.
Zurück zum Zitat S. Du, S. Chen, J. Song, and Y. Li, “Hot deformation behavior and dynamic recrystallization of medium carbon LZ50 steel,” Metall. Mater. Trans. A 48, 1310–1320 (2017).CrossRef S. Du, S. Chen, J. Song, and Y. Li, “Hot deformation behavior and dynamic recrystallization of medium carbon LZ50 steel,” Metall. Mater. Trans. A 48, 1310–1320 (2017).CrossRef
12.
Zurück zum Zitat A. Momeni, S. Abbasi, and H. Badri, “Hot deformation behavior and constitutive modeling of VCN200 low alloy steel,” Appl. Math. Modell. 36, 5624–5632 (2012).CrossRef A. Momeni, S. Abbasi, and H. Badri, “Hot deformation behavior and constitutive modeling of VCN200 low alloy steel,” Appl. Math. Modell. 36, 5624–5632 (2012).CrossRef
13.
Zurück zum Zitat S. Chen, C. Huang, C. Wang, and Z. Duan, “Mechanical properties and constitutive relationships of 30CrMnSiA steel heated at high rate,” Mater. Sci. Eng., A 483, 105–108 (2008).CrossRef S. Chen, C. Huang, C. Wang, and Z. Duan, “Mechanical properties and constitutive relationships of 30CrMnSiA steel heated at high rate,” Mater. Sci. Eng., A 483, 105–108 (2008).CrossRef
14.
Zurück zum Zitat Y. Fu, J. Hu, X. Shen, Y. Wang, and W. Zhao, “Surface hardening of 30CrMnSiA steel using continuous electron beam,” Nucl. Instrum. Methods Phys. Res., Sect. B 410, 207–214 (2017). Y. Fu, J. Hu, X. Shen, Y. Wang, and W. Zhao, “Surface hardening of 30CrMnSiA steel using continuous electron beam,” Nucl. Instrum. Methods Phys. Res., Sect. B 410, 207–214 (2017).
15.
Zurück zum Zitat L. Tang and M. Yan, “Effects of rare earths addition on the microstructure, wear and corrosion resistances of plasma nitrided 30CrMnSiA steel,” Surf. Coat. Technol. 206, 2363–2370 (2012).CrossRef L. Tang and M. Yan, “Effects of rare earths addition on the microstructure, wear and corrosion resistances of plasma nitrided 30CrMnSiA steel,” Surf. Coat. Technol. 206, 2363–2370 (2012).CrossRef
16.
Zurück zum Zitat M. Hadi, A. Shafyei, and M. Meratian, “A comparative study of microstructure and high temperature mechanical properties of a β-stabilized TiAl alloy modified by lanthanum and erbium,” Mater. Sci. Eng., A 624, 1–8 (2015).CrossRef M. Hadi, A. Shafyei, and M. Meratian, “A comparative study of microstructure and high temperature mechanical properties of a β-stabilized TiAl alloy modified by lanthanum and erbium,” Mater. Sci. Eng., A 624, 1–8 (2015).CrossRef
17.
Zurück zum Zitat M. Hadi, M. Meratian, and A. Shafyei, “The effect of lanthanum on the microstructure and high temperature mechanical properties of a beta-solidifying TiAl alloy,” J. Alloys Compd. 618, 27–32 (2015).CrossRef M. Hadi, M. Meratian, and A. Shafyei, “The effect of lanthanum on the microstructure and high temperature mechanical properties of a beta-solidifying TiAl alloy,” J. Alloys Compd. 618, 27–32 (2015).CrossRef
18.
Zurück zum Zitat R. Ebrahimi and A. Najafizadeh, “A new method for evaluation of friction in bulk metal forming,” J. Mater. Process. Technol. 152, 136–143 (2004).CrossRef R. Ebrahimi and A. Najafizadeh, “A new method for evaluation of friction in bulk metal forming,” J. Mater. Process. Technol. 152, 136–143 (2004).CrossRef
19.
Zurück zum Zitat H. Dong and X. Sun, “Deformation induced ferrite transformation, in Ultra-Fine Grained Steels (Springer-Verlag, Berlin, 2009), pp. 86–136. H. Dong and X. Sun, “Deformation induced ferrite transformation, in Ultra-Fine Grained Steels (Springer-Verlag, Berlin, 2009), pp. 86–136.
20.
Zurück zum Zitat A. V. Frolov, “Optimizing the mechanical properties of steel and alloys by adjustment of the defect nanostructure,” Steel Transl. 43, 635–639 (2013).CrossRef A. V. Frolov, “Optimizing the mechanical properties of steel and alloys by adjustment of the defect nanostructure,” Steel Transl. 43, 635–639 (2013).CrossRef
21.
Zurück zum Zitat A. Najafizadeh and J. J. Jonas, “Predicting the critical stress for initiation of dynamic recrystallization,” ISIJ Int. 46, 1679–1684 (2006).CrossRef A. Najafizadeh and J. J. Jonas, “Predicting the critical stress for initiation of dynamic recrystallization,” ISIJ Int. 46, 1679–1684 (2006).CrossRef
22.
Zurück zum Zitat K. P. Rao and E. B. Hawbolt, “Assessment of simple flow-stress relationships using literature data for a range of steels,” J. Mater. Process. Technol. 29, 15–40 (1992).CrossRef K. P. Rao and E. B. Hawbolt, “Assessment of simple flow-stress relationships using literature data for a range of steels,” J. Mater. Process. Technol. 29, 15–40 (1992).CrossRef
23.
Zurück zum Zitat H.-W. Luo, H. Li, and X.-D. Fang, “Constitutive analysis in hot working of a Nb heavily alloyed stainless steel,” J. Iron Steel Res., Int. 14, 179–182 (2007).CrossRef H.-W. Luo, H. Li, and X.-D. Fang, “Constitutive analysis in hot working of a Nb heavily alloyed stainless steel,” J. Iron Steel Res., Int. 14, 179–182 (2007).CrossRef
24.
Zurück zum Zitat Z.-H. Du, X.-H. Zhang, X.-Y. Fang, and X.-J. Zhang, “Hot compression deformation behavior of MB26 magnesium alloy,” Trans. Nonferrous Met. Soc. China, (2007). Z.-H. Du, X.-H. Zhang, X.-Y. Fang, and X.-J. Zhang, “Hot compression deformation behavior of MB26 magnesium alloy,” Trans. Nonferrous Met. Soc. China, (2007).
25.
Zurück zum Zitat Y. C. Lin, M.-S. Chen, and J. Zhong, “Constitutive modeling for elevated temperature flow behavior of 42CrMo steel,” Comput. Mater. Sci. 42, 470–477 (2008).CrossRef Y. C. Lin, M.-S. Chen, and J. Zhong, “Constitutive modeling for elevated temperature flow behavior of 42CrMo steel,” Comput. Mater. Sci. 42, 470–477 (2008).CrossRef
26.
Zurück zum Zitat H. Mirzadeh, M. Roostaei, M. H. Parsa, and R. Mahmudi, “Rate controlling mechanisms during hot deformation of Mg–3Gd–1Zn magnesium alloy: dislocation glide and climb, dynamic recrystallization, and mechanical twinning,” Mater. Des. 68, 228–231 (2015).CrossRef H. Mirzadeh, M. Roostaei, M. H. Parsa, and R. Mahmudi, “Rate controlling mechanisms during hot deformation of Mg–3Gd–1Zn magnesium alloy: dislocation glide and climb, dynamic recrystallization, and mechanical twinning,” Mater. Des. 68, 228–231 (2015).CrossRef
27.
Zurück zum Zitat S. Saadatkia, H. Mirzadeh, and J.-M. Cabrera, “Hot deformation behavior, dynamic recrystallization, and physically-based constitutive modeling of plain carbon steels,” Mater. Sci. Eng., A 636, 196–202 (2015).CrossRef S. Saadatkia, H. Mirzadeh, and J.-M. Cabrera, “Hot deformation behavior, dynamic recrystallization, and physically-based constitutive modeling of plain carbon steels,” Mater. Sci. Eng., A 636, 196–202 (2015).CrossRef
28.
Zurück zum Zitat H. Zhao, G. Liu, and L. Xu, “Rate-controlling mechanisms of hot deformation in a medium carbon vanadium microalloy steel,” Mater. Sci. Eng., A 559, 262–267 (2013).CrossRef H. Zhao, G. Liu, and L. Xu, “Rate-controlling mechanisms of hot deformation in a medium carbon vanadium microalloy steel,” Mater. Sci. Eng., A 559, 262–267 (2013).CrossRef
29.
Zurück zum Zitat H. Mirzadeh, “Constitutive modeling and prediction of hot deformation flow stress under dynamic recrystallization conditions,” Mech. Mater. 85, 66–79 (2015).CrossRef H. Mirzadeh, “Constitutive modeling and prediction of hot deformation flow stress under dynamic recrystallization conditions,” Mech. Mater. 85, 66–79 (2015).CrossRef
30.
Zurück zum Zitat A. A. Vasilyev, S. F. Sokolov, N. G. Kolbasnikov, and D. F. Sokolov, “Effect of alloying on the self-diffusion activation energy in γ-iron,” Phys. Solid State 53, 2194–2200 (2011).CrossRef A. A. Vasilyev, S. F. Sokolov, N. G. Kolbasnikov, and D. F. Sokolov, “Effect of alloying on the self-diffusion activation energy in γ-iron,” Phys. Solid State 53, 2194–2200 (2011).CrossRef
31.
Zurück zum Zitat R. Lino, L. G. L. Guadanini, L. B. Silva, J. G. C. Neto, and R. Barbosa, “Effect of Nb and Ti addition on activation energy for austenite hot deformation,” J. Mater. Res. Technol. 8, 180–188 (2019).CrossRef R. Lino, L. G. L. Guadanini, L. B. Silva, J. G. C. Neto, and R. Barbosa, “Effect of Nb and Ti addition on activation energy for austenite hot deformation,” J. Mater. Res. Technol. 8, 180–188 (2019).CrossRef
32.
Zurück zum Zitat C. Li, Y. Liu, Y. Tan, and F. Zhao, “Hot deformation behavior and constitutive modeling of H13-mod steel,” Metals 8, 846 (2018).CrossRef C. Li, Y. Liu, Y. Tan, and F. Zhao, “Hot deformation behavior and constitutive modeling of H13-mod steel,” Metals 8, 846 (2018).CrossRef
Metadaten
Titel
Hot Deformation Behavior and Constitutive Modelling of a Medium-Carbon Structural Steel
verfasst von
Khalil Boroumand
Morteza Hadi
Reza Vafaei
Publikationsdatum
18.08.2021
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 14/2021
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21140052

Weitere Artikel der Ausgabe 14/2021

Physics of Metals and Metallography 14/2021 Zur Ausgabe

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

The Development of Plate and Lath Morphology in Ni5Ge3