Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 9/2018

27.08.2018

Hot Deformation Behavior of the 20 vol.% TiC/Cu-Al2O3 Composites

verfasst von: Yong Liu, Zhiqiang Yang, Baohong Tian, Yi Zhang, Zhengbin Gu, Alex A. Volinsky

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 9/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hot deformation behavior of the 20 vol.% TiC/Cu-Al2O3 composite was studied using the Gleeble-1500D thermo-mechanical simulator with various strain rates at different deformation temperatures. The softening mechanism due to dynamic recrystallization was a feature of the high-temperature true stress–strain curves. The peak stress increased at the lower deformation temperature and the higher strain rate. Microstructure evolution was explored. Thermal deformation activation energy was calculated as 218.9 kJ/mol, and the constitutive equation was established. The processing map was constructed to obtain optimal processing domain of 700-850 °C and 0.001-0.04 s−1 for hot working.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Chrysanthou and G. Erbaccio, Enhancing the Dispersion of TiC in Copper, J. Mater. Lett., 1996, 15, p 774–775CrossRef A. Chrysanthou and G. Erbaccio, Enhancing the Dispersion of TiC in Copper, J. Mater. Lett., 1996, 15, p 774–775CrossRef
2.
Zurück zum Zitat P.G. Koppad, K.T. Kashyap, V. Shrathinth, T.A. Shetty, and R.G. Koppad, Microstructure and Microhardness of carbon Nanotube Reinforced Copper Nanocomposites, Mater. Sci. Technol., 2013, 29, p 605–609CrossRef P.G. Koppad, K.T. Kashyap, V. Shrathinth, T.A. Shetty, and R.G. Koppad, Microstructure and Microhardness of carbon Nanotube Reinforced Copper Nanocomposites, Mater. Sci. Technol., 2013, 29, p 605–609CrossRef
3.
Zurück zum Zitat N. Zarrinfar, A.R. Kennedy, and P.H. Shipway, Reaction Synthesis of Cu–TiCx Master-Alloys for the Production of Copper-Based Composites, Scripta Mater., 2004, 50, p 949–952CrossRef N. Zarrinfar, A.R. Kennedy, and P.H. Shipway, Reaction Synthesis of Cu–TiCx Master-Alloys for the Production of Copper-Based Composites, Scripta Mater., 2004, 50, p 949–952CrossRef
4.
Zurück zum Zitat Y.H. Liang, H.Y. Wang, Y.F. Yang, Y.Y. Wang, and P.C. Jiang, Evolution Process of the Synthesis of TiC in the Cu–Ti–C System, J. Alloys Compds., 2008, 452, p 298–303CrossRef Y.H. Liang, H.Y. Wang, Y.F. Yang, Y.Y. Wang, and P.C. Jiang, Evolution Process of the Synthesis of TiC in the Cu–Ti–C System, J. Alloys Compds., 2008, 452, p 298–303CrossRef
5.
Zurück zum Zitat N. Zarrinfar, P.H. Shipway, A.R. Kennedy, and A. Saidi, Carbide Stoichiometry in TiCx and Cu–TiCx Produced by Self-Propagating High-Temperature Synthesis, Scripta Mater., 2002, 46, p 121–126CrossRef N. Zarrinfar, P.H. Shipway, A.R. Kennedy, and A. Saidi, Carbide Stoichiometry in TiCx and Cu–TiCx Produced by Self-Propagating High-Temperature Synthesis, Scripta Mater., 2002, 46, p 121–126CrossRef
6.
Zurück zum Zitat J.H. Jang, C.H. Lee, H.N. Han, H.K.D.H. Bhadeshia, and D.W. Sun, Modelling Coarsening Behaviour of TiC Precipitates in High Strength, Low Alloy Steels, Mater. Sci. Technol., 2013, 29, p 1074–1079CrossRef J.H. Jang, C.H. Lee, H.N. Han, H.K.D.H. Bhadeshia, and D.W. Sun, Modelling Coarsening Behaviour of TiC Precipitates in High Strength, Low Alloy Steels, Mater. Sci. Technol., 2013, 29, p 1074–1079CrossRef
7.
Zurück zum Zitat S. Rathod, O.P. Modi, B.K. Prasad, A. Chrysanthou, D. Vallauri, V.P. Deshmukh, and A.K. Shah, Cast In Situ Cu–TiC Composites: Synthesis by SHS Route and Characterization, Mater. Sci. Eng. A, 2009, 502, p 91–98CrossRef S. Rathod, O.P. Modi, B.K. Prasad, A. Chrysanthou, D. Vallauri, V.P. Deshmukh, and A.K. Shah, Cast In Situ Cu–TiC Composites: Synthesis by SHS Route and Characterization, Mater. Sci. Eng. A, 2009, 502, p 91–98CrossRef
8.
Zurück zum Zitat H.W. Wang, J.Q. Qi, C.M. Zou, and Z.J. Wei, Effect of Microstructural Characteristics on Room Temperature Tensile Properties of In Situ Synthesised TiC/TA15 Composite, Mater. Sci. Technol., 2012, 28, p 597–602CrossRef H.W. Wang, J.Q. Qi, C.M. Zou, and Z.J. Wei, Effect of Microstructural Characteristics on Room Temperature Tensile Properties of In Situ Synthesised TiC/TA15 Composite, Mater. Sci. Technol., 2012, 28, p 597–602CrossRef
9.
Zurück zum Zitat R.H. Palma, A.H. Seputveda, R.A. Espinoza, and R.C. Montiglio, Performance of Cu-Tic Alloy Electrodes Developed by Reaction Milling for Electrical-Resistance Welding, J. Mater. Process. Technol., 2005, 162, p 62–66CrossRef R.H. Palma, A.H. Seputveda, R.A. Espinoza, and R.C. Montiglio, Performance of Cu-Tic Alloy Electrodes Developed by Reaction Milling for Electrical-Resistance Welding, J. Mater. Process. Technol., 2005, 162, p 62–66CrossRef
10.
Zurück zum Zitat F. Ren, A. Zhi, D. Zhang, B. Tian, A.A. Volinsky, and X. Shen, Preparation of Cu-Al2O3 Bulk Nano-Composites by Combining Cu-Al Alloy Sheets Internal Oxidation with Hot Extrusion, J. Alloys Compd., 2015, 633, p 323–328CrossRef F. Ren, A. Zhi, D. Zhang, B. Tian, A.A. Volinsky, and X. Shen, Preparation of Cu-Al2O3 Bulk Nano-Composites by Combining Cu-Al Alloy Sheets Internal Oxidation with Hot Extrusion, J. Alloys Compd., 2015, 633, p 323–328CrossRef
11.
Zurück zum Zitat F. Ren, X. Li, J. Ren, Y. Xiong, A.A. Volinsky, and B. Tian, Precipitated Al2O3 Phase Characterization in Internally Oxidized Cu–Al Alloy Sheets, J. Alloys Compd., 2017, 695, p 452–457CrossRef F. Ren, X. Li, J. Ren, Y. Xiong, A.A. Volinsky, and B. Tian, Precipitated Al2O3 Phase Characterization in Internally Oxidized Cu–Al Alloy Sheets, J. Alloys Compd., 2017, 695, p 452–457CrossRef
12.
Zurück zum Zitat Y. Zhang, H. Sun, A.A. Volinsky, B. Tian, Z. Chai, and P. Liu, Characterization of the Hot Deformation Behavior of Cu–Cr–Zr Alloy by Processing Maps, Acta Metall. Sin., 2016, 29, p 422–430CrossRef Y. Zhang, H. Sun, A.A. Volinsky, B. Tian, Z. Chai, and P. Liu, Characterization of the Hot Deformation Behavior of Cu–Cr–Zr Alloy by Processing Maps, Acta Metall. Sin., 2016, 29, p 422–430CrossRef
13.
Zurück zum Zitat Y. Zhang, H. Sun, A.A. Volinsky, B. Tian, K. Song, and B. Wang, Hot Workability and Constitutive Model of the Cu-Zr-Nd Alloy, Vacuum, 2017, 146, p 35–43CrossRef Y. Zhang, H. Sun, A.A. Volinsky, B. Tian, K. Song, and B. Wang, Hot Workability and Constitutive Model of the Cu-Zr-Nd Alloy, Vacuum, 2017, 146, p 35–43CrossRef
14.
Zurück zum Zitat Y. Zhang, H. Sun, A.A. Volinsky, B. Wang, B. Tian, and Y. Liu, Constitutive Model for Hot Deformation of the Cu-Zr-Ce Alloy, J. Mater. Eng. Perform., 2018, 27, p 728–738CrossRef Y. Zhang, H. Sun, A.A. Volinsky, B. Wang, B. Tian, and Y. Liu, Constitutive Model for Hot Deformation of the Cu-Zr-Ce Alloy, J. Mater. Eng. Perform., 2018, 27, p 728–738CrossRef
15.
Zurück zum Zitat Y. Zhang, H. Sun, A.A. Volinsky, B. Wang, B. Tian, and Z. Chai, Small Y Addition Effects on Hot Deformation Behavior of Copper-matrix Alloys, Adv. Eng. Mater., 2017, 19, p 1700197CrossRef Y. Zhang, H. Sun, A.A. Volinsky, B. Wang, B. Tian, and Z. Chai, Small Y Addition Effects on Hot Deformation Behavior of Copper-matrix Alloys, Adv. Eng. Mater., 2017, 19, p 1700197CrossRef
16.
Zurück zum Zitat M. Besterci, J. Ivan, L. Kovac, T. Weissgaerber, and C. Sauer, Strain and Fracture Mechanism of Cu–TiC, Mater. Lett., 1999, 38, p 270–274CrossRef M. Besterci, J. Ivan, L. Kovac, T. Weissgaerber, and C. Sauer, Strain and Fracture Mechanism of Cu–TiC, Mater. Lett., 1999, 38, p 270–274CrossRef
17.
Zurück zum Zitat J.H. Xiong, J.H. Huang, Z.P. Wang, Y.H. Ban, H. Zhang, and X.K. Zhao, Brazing of Carbon Fibre Reinforced SiC Composite and Ti Alloy Using Cu–Ti–C Filler Materials, Mater. Sci. Technol., 2010, 26, p 356–360CrossRef J.H. Xiong, J.H. Huang, Z.P. Wang, Y.H. Ban, H. Zhang, and X.K. Zhao, Brazing of Carbon Fibre Reinforced SiC Composite and Ti Alloy Using Cu–Ti–C Filler Materials, Mater. Sci. Technol., 2010, 26, p 356–360CrossRef
18.
Zurück zum Zitat C.R. Rambo, M. Travitzky, K. Zimmerman, and P. Greil, Synthesis of TiC/Ti–Cu Composites by Pressureless Reactive Infiltration of TiCu Alloy into Carbon Preforms Fabricated by 3D-Printing, Mater. Lett., 2005, 59, p 1028–1031CrossRef C.R. Rambo, M. Travitzky, K. Zimmerman, and P. Greil, Synthesis of TiC/Ti–Cu Composites by Pressureless Reactive Infiltration of TiCu Alloy into Carbon Preforms Fabricated by 3D-Printing, Mater. Lett., 2005, 59, p 1028–1031CrossRef
19.
Zurück zum Zitat L.X. Zhang, J.C. Feng, and H.B. Liu, High Frequency Induction Brazing of TiC Cermets to Steel with Ag–Cu–Zn Foil, Mater. Sci. Technol., 2008, 24, p 623–626CrossRef L.X. Zhang, J.C. Feng, and H.B. Liu, High Frequency Induction Brazing of TiC Cermets to Steel with Ag–Cu–Zn Foil, Mater. Sci. Technol., 2008, 24, p 623–626CrossRef
20.
Zurück zum Zitat B.H. Tian, P. Liu, K.X. Song, Y. Li, Y. Liu, F.Z. Ren, and J.H. Su, Microstructure and Properties at Elevated Temperature of a Nano-Al2O3 Particles Dispersion-Strengthened Copper Base Composite, Mater. Sci. Eng. A, 2006, 435, p 705–710CrossRef B.H. Tian, P. Liu, K.X. Song, Y. Li, Y. Liu, F.Z. Ren, and J.H. Su, Microstructure and Properties at Elevated Temperature of a Nano-Al2O3 Particles Dispersion-Strengthened Copper Base Composite, Mater. Sci. Eng. A, 2006, 435, p 705–710CrossRef
21.
Zurück zum Zitat R.X. Chai, D.H. Xu, and C. Guo, Prediction of Constitutive Behaviour of 20CrMnTiH Steel Under Hot Deformation Conditions, Mater. Sci. Technol., 2012, 28, p 857–863CrossRef R.X. Chai, D.H. Xu, and C. Guo, Prediction of Constitutive Behaviour of 20CrMnTiH Steel Under Hot Deformation Conditions, Mater. Sci. Technol., 2012, 28, p 857–863CrossRef
22.
Zurück zum Zitat H. Shi, A.J. McLaren, C.M. Sellars, R. Shahani, and R. Bolingbroke, Constitutive Equations for High Temperature Flow Stress of Aluminium Alloys, Mater. Sci. Technol., 1997, 3, p 210–216CrossRef H. Shi, A.J. McLaren, C.M. Sellars, R. Shahani, and R. Bolingbroke, Constitutive Equations for High Temperature Flow Stress of Aluminium Alloys, Mater. Sci. Technol., 1997, 3, p 210–216CrossRef
23.
Zurück zum Zitat C.M. Sellars and W.J. McTegart, On the Mechanism of Hot Deformation, Acta Metall., 1966, 14, p 1136–1138CrossRef C.M. Sellars and W.J. McTegart, On the Mechanism of Hot Deformation, Acta Metall., 1966, 14, p 1136–1138CrossRef
24.
Zurück zum Zitat C. Zener and J.H. Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15, p 22–32CrossRef C. Zener and J.H. Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15, p 22–32CrossRef
25.
Zurück zum Zitat Z.Q. Yang, Y. Liu, B.H. Tian, and Y. Zhang, Model of Critical Strain for Dynamic Recrystallization in 10%TiC/Cu-Al2O3 Composite, J. Cent. South Univ., 2014, 21, p 4059–4065CrossRef Z.Q. Yang, Y. Liu, B.H. Tian, and Y. Zhang, Model of Critical Strain for Dynamic Recrystallization in 10%TiC/Cu-Al2O3 Composite, J. Cent. South Univ., 2014, 21, p 4059–4065CrossRef
26.
Zurück zum Zitat R.H. Palma and A.O. Sepúlveda, Creep Behavior of Two Cu-2 vol.% TiC Alloys Obtained by Reaction Milling and Extrusion, Mater. Sci. Eng. A, 2013, 588, p 82–85CrossRef R.H. Palma and A.O. Sepúlveda, Creep Behavior of Two Cu-2 vol.% TiC Alloys Obtained by Reaction Milling and Extrusion, Mater. Sci. Eng. A, 2013, 588, p 82–85CrossRef
27.
Zurück zum Zitat B.K. Prasad, S.P. Narayan, O.P. Modi, N. Ramakrishnan, A.M. Kumar, and A.K. Sachdev, Microstructure and Micromechanism Maps to Optimise Useful Deformation Processing Conditions in Magnesium Alloy, Mater. Sci. Technol., 2011, 27, p 1639–1647CrossRef B.K. Prasad, S.P. Narayan, O.P. Modi, N. Ramakrishnan, A.M. Kumar, and A.K. Sachdev, Microstructure and Micromechanism Maps to Optimise Useful Deformation Processing Conditions in Magnesium Alloy, Mater. Sci. Technol., 2011, 27, p 1639–1647CrossRef
28.
Zurück zum Zitat H.Z. Li, H.J. Wang, X.P. Liang, H.T. Liu, Y. Liu, and X.M. Zhang, Hot Deformation and Processing Map of 2519A Aluminum Alloy, Mater. Sci. Eng. A, 2011, 528, p 1548–1552CrossRef H.Z. Li, H.J. Wang, X.P. Liang, H.T. Liu, Y. Liu, and X.M. Zhang, Hot Deformation and Processing Map of 2519A Aluminum Alloy, Mater. Sci. Eng. A, 2011, 528, p 1548–1552CrossRef
Metadaten
Titel
Hot Deformation Behavior of the 20 vol.% TiC/Cu-Al2O3 Composites
verfasst von
Yong Liu
Zhiqiang Yang
Baohong Tian
Yi Zhang
Zhengbin Gu
Alex A. Volinsky
Publikationsdatum
27.08.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 9/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3586-1

Weitere Artikel der Ausgabe 9/2018

Journal of Materials Engineering and Performance 9/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.