Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 4/2019

12.03.2019

Hot Deformation Characteristics and Processing Map of FV520B Martensitic Precipitation-Hardened Stainless Steel

verfasst von: Dan Huang, Wei Feng

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hot deformation characteristics of FV520B martensitic precipitation-hardened stainless steel were investigated in the temperature range of 850-1150 °C and strain rate range of 0.005-0.5 s−1 with true strain 0.8 by using Gleeble-3500 thermo-mechanical simulator. Critical stress and corresponding critical strain for dynamic recrystallization initiation were calculated. The constitutive equation was developed by employing Arrhenius constitutive model to represent the nonlinear relationship of true stress and deformation parameters including temperature, strain rate and strain. The correlation coefficient and average absolute relative error are 0.9979 and 2.225%, which indicates the good predictive accuracy of the established constitutive equations. Processing maps were constructed at different plastic strains levels based on dynamic material model (DMM) and established constitutive equation. Combining the processing map with microstructure, the optimum region for good workability is designated as the temperature range of 1050-1125 °C and strain rate range of 0.027-0.23 s−1 with peak efficiency of 0.32. Homogeneous fine and equiaxed dynamic recrystallization (DRX) grains can be found in this optimum according to the microstructure metallographic pictures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Qin, J.F. Li, S.Y. Chen, and Y.P. Qu, Experimental Study on Stress Corrosion Crack Propagation Rate of FV520B in Carbon Dioxide and Hydrogen Sulfide Solution, Results Phys., 2016, 6, p 365–372CrossRef M. Qin, J.F. Li, S.Y. Chen, and Y.P. Qu, Experimental Study on Stress Corrosion Crack Propagation Rate of FV520B in Carbon Dioxide and Hydrogen Sulfide Solution, Results Phys., 2016, 6, p 365–372CrossRef
2.
Zurück zum Zitat Q. Guo and X.L. Guo, Research on High-Cycle Fatigue Behavior of FV520B Stainless Steel Based on Intrinsic Dissipation, Mater. Des., 2016, 90, p 248–255CrossRef Q. Guo and X.L. Guo, Research on High-Cycle Fatigue Behavior of FV520B Stainless Steel Based on Intrinsic Dissipation, Mater. Des., 2016, 90, p 248–255CrossRef
3.
Zurück zum Zitat Q.L. Chu, M. Zhang, and J.H. Li, Failure Analysis of Impeller Made of FV520B Martensitic Precipitated Hardening Stainless Steel, Eng. Fail. Anal., 2013, 34, p 501–510CrossRef Q.L. Chu, M. Zhang, and J.H. Li, Failure Analysis of Impeller Made of FV520B Martensitic Precipitated Hardening Stainless Steel, Eng. Fail. Anal., 2013, 34, p 501–510CrossRef
4.
Zurück zum Zitat Y.N. Song, H.D. Wang, B.S. Xu, and Z.G. Xing, Effect of Fretting Wear on Very High Cycle Bending Fatigue Behaviors Of FV520B Steel, Tribol. Int., 2016, 103, p 132–138CrossRef Y.N. Song, H.D. Wang, B.S. Xu, and Z.G. Xing, Effect of Fretting Wear on Very High Cycle Bending Fatigue Behaviors Of FV520B Steel, Tribol. Int., 2016, 103, p 132–138CrossRef
5.
Zurück zum Zitat Q.G. Wu, X.D. Chen, Z.C. Fan, D.F. Nie, and J.H. Pan, Engineering Fracture Assessment of FV520B Steel Impeller Subjected to Dynamic Loading, Eng. Fract. Mech., 2015, 146, p 210–223CrossRef Q.G. Wu, X.D. Chen, Z.C. Fan, D.F. Nie, and J.H. Pan, Engineering Fracture Assessment of FV520B Steel Impeller Subjected to Dynamic Loading, Eng. Fract. Mech., 2015, 146, p 210–223CrossRef
6.
Zurück zum Zitat S. Kumar, N. Roy, and R. Ganguli, Monitoring Low Cycle Fatigue Damage in Turbine Blade Using Vibration Characteristics, Mech. Syst. Signal. Pr., 2007, 21, p 480–501CrossRef S. Kumar, N. Roy, and R. Ganguli, Monitoring Low Cycle Fatigue Damage in Turbine Blade Using Vibration Characteristics, Mech. Syst. Signal. Pr., 2007, 21, p 480–501CrossRef
7.
Zurück zum Zitat J. Lambert, A.R. Chambers, I. Sinclair, and S.M. Spearing, 3D Damage Characterization and the Role of Voids in the Fatigue of Wind Turbine Blade Materials, Compos. Sci. Technol., 2012, 72, p 337–343CrossRef J. Lambert, A.R. Chambers, I. Sinclair, and S.M. Spearing, 3D Damage Characterization and the Role of Voids in the Fatigue of Wind Turbine Blade Materials, Compos. Sci. Technol., 2012, 72, p 337–343CrossRef
8.
Zurück zum Zitat K.W. Barlow and R. Chandra, Fatigue Crack Propagation Simulation in an Aircraft Engine Fan Blade Attachment, Int. J. Fatigue., 2005, 27, p 1661–1668CrossRef K.W. Barlow and R. Chandra, Fatigue Crack Propagation Simulation in an Aircraft Engine Fan Blade Attachment, Int. J. Fatigue., 2005, 27, p 1661–1668CrossRef
9.
Zurück zum Zitat B.Y. He, K.A. Soady, B.G. Mellor, G. Harrison, and P.A.S. Reed, Fatigue Crack Growth Behaviour in the LCF Regime in a Shot Peened Steam Turbine Blade Material, Int. J. Fatigue., 2016, 82, p 280–291CrossRef B.Y. He, K.A. Soady, B.G. Mellor, G. Harrison, and P.A.S. Reed, Fatigue Crack Growth Behaviour in the LCF Regime in a Shot Peened Steam Turbine Blade Material, Int. J. Fatigue., 2016, 82, p 280–291CrossRef
10.
Zurück zum Zitat P.F. Bariani, S. Bruschi, and T.D. Negro, Integrating Physical and Numerical Simulation Techniques to Design the Hot Forging Process of Stainless Steel Turbine Blades, Int. J. Mach. Tool. Manuf., 2004, 44, p 945–951CrossRef P.F. Bariani, S. Bruschi, and T.D. Negro, Integrating Physical and Numerical Simulation Techniques to Design the Hot Forging Process of Stainless Steel Turbine Blades, Int. J. Mach. Tool. Manuf., 2004, 44, p 945–951CrossRef
11.
Zurück zum Zitat S. Bruschi and A. Ghiotti, Distortions Induced in Turbine Blades by Hot Forging and Cooling, Int. J. Mach. Tool Manuf., 2008, 48, p 761–767CrossRef S. Bruschi and A. Ghiotti, Distortions Induced in Turbine Blades by Hot Forging and Cooling, Int. J. Mach. Tool Manuf., 2008, 48, p 761–767CrossRef
12.
Zurück zum Zitat Y.S. Na, J.T. Yeom, N.K. Pakr, and J.Y. Lee, Prediction of Microstructure Evolution During High Temperature Blade forgiNg of a Ni-Fe Based Superalloy, Alloy 718, Met. Mater. Int., 2003, 9, p 15–19CrossRef Y.S. Na, J.T. Yeom, N.K. Pakr, and J.Y. Lee, Prediction of Microstructure Evolution During High Temperature Blade forgiNg of a Ni-Fe Based Superalloy, Alloy 718, Met. Mater. Int., 2003, 9, p 15–19CrossRef
13.
Zurück zum Zitat V. Alimirzaloo, M.H. Sadeghi, and F.R. Biglari, Optimization of the Forging of Aerofoil Blade Using the Finite Element Method and Fuzzy-Pareto Based Genetic Algorithm, J. Mech. Sci. Technol., 2012, 26, p 1801–1810CrossRef V. Alimirzaloo, M.H. Sadeghi, and F.R. Biglari, Optimization of the Forging of Aerofoil Blade Using the Finite Element Method and Fuzzy-Pareto Based Genetic Algorithm, J. Mech. Sci. Technol., 2012, 26, p 1801–1810CrossRef
14.
Zurück zum Zitat Z. Wang, X.N. Wang, and Z.H. Zhu, Characterization of High-Temperature Deformation Behavior And Processing Map of TB17 Titanium Alloy, J. Alloys Compd., 2017, 692, p 149–154CrossRef Z. Wang, X.N. Wang, and Z.H. Zhu, Characterization of High-Temperature Deformation Behavior And Processing Map of TB17 Titanium Alloy, J. Alloys Compd., 2017, 692, p 149–154CrossRef
15.
Zurück zum Zitat B. Guo, H.P. Ji, X.G. Liu, L. Gao, R.M. Dong, M. Jin, and Q.H. Zhang, Research on Flow Stress During Hot Deformation Process and Processing Map for 316LN Austenitic Stainless Steel, J. Mater. Eng. Perform., 2012, 21, p 1455–1461CrossRef B. Guo, H.P. Ji, X.G. Liu, L. Gao, R.M. Dong, M. Jin, and Q.H. Zhang, Research on Flow Stress During Hot Deformation Process and Processing Map for 316LN Austenitic Stainless Steel, J. Mater. Eng. Perform., 2012, 21, p 1455–1461CrossRef
16.
Zurück zum Zitat Y. Sun, Z.P. Wan, L.X. Hu, and J.S. Ren, Characterization of Hot Processing Parameters of Powder Metallurgy TiAl-based Alloy Based on the Activation Energy Map and Processing Map, Mater. Des., 2015, 86, p 922–932CrossRef Y. Sun, Z.P. Wan, L.X. Hu, and J.S. Ren, Characterization of Hot Processing Parameters of Powder Metallurgy TiAl-based Alloy Based on the Activation Energy Map and Processing Map, Mater. Des., 2015, 86, p 922–932CrossRef
17.
Zurück zum Zitat R.K.C. Nkhoma, C.W. Siyasiya, and W.E. Stump, Hot Workability of AISI, 321 and AISI, 304 Austenitic Stainless Steels, J. Alloys compd., 2014, 595, p 103–112CrossRef R.K.C. Nkhoma, C.W. Siyasiya, and W.E. Stump, Hot Workability of AISI, 321 and AISI, 304 Austenitic Stainless Steels, J. Alloys compd., 2014, 595, p 103–112CrossRef
18.
Zurück zum Zitat Q.L. Pan, B. Li, Y. Wang, Y.W. Zhang, and Z.M. Yin, Characterization of Hot Deformation Behavior of Ni-base Superalloy Rene’41 Using Processing Map, Mater. Sci. Eng. A, 2013, 585, p 371–378CrossRef Q.L. Pan, B. Li, Y. Wang, Y.W. Zhang, and Z.M. Yin, Characterization of Hot Deformation Behavior of Ni-base Superalloy Rene’41 Using Processing Map, Mater. Sci. Eng. A, 2013, 585, p 371–378CrossRef
19.
Zurück zum Zitat Z.X. Shi, X.F. Yan, and C.H. Duan, Characterization of Hot Deformation Behavior of GH925 Superalloy Using Constitutive Equation, Processing Map and Microstructure Observation, J. Alloys compd., 2015, 652, p 30–38CrossRef Z.X. Shi, X.F. Yan, and C.H. Duan, Characterization of Hot Deformation Behavior of GH925 Superalloy Using Constitutive Equation, Processing Map and Microstructure Observation, J. Alloys compd., 2015, 652, p 30–38CrossRef
20.
Zurück zum Zitat N.D. Ryan and H.J. Mcqueen, Flow Stress, Dynamic Restoration, Strain Hardening and Ductility in Hot Working of 316 Steel, J. Mater. Process Tech., 1990, 21, p 177–199CrossRef N.D. Ryan and H.J. Mcqueen, Flow Stress, Dynamic Restoration, Strain Hardening and Ductility in Hot Working of 316 Steel, J. Mater. Process Tech., 1990, 21, p 177–199CrossRef
21.
Zurück zum Zitat Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, and J.T. Morgan, Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-6242, Metall. Trans. A, 1984, 15, p 1883–1892CrossRef Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, and J.T. Morgan, Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-6242, Metall. Trans. A, 1984, 15, p 1883–1892CrossRef
22.
Zurück zum Zitat Y.V.R.K. Prasad and T. Seshacharyulu, Processing Maps for Hot Working of Titanium Alloys, Mater. Sci. Eng. A, 1998, 243, p 82–88CrossRef Y.V.R.K. Prasad and T. Seshacharyulu, Processing Maps for Hot Working of Titanium Alloys, Mater. Sci. Eng. A, 1998, 243, p 82–88CrossRef
23.
Zurück zum Zitat Y.V.R.K. Prasad, Processing Maps: A Status Report, J. Mater. Eng. Perform., 2003, 12, p 638–645CrossRef Y.V.R.K. Prasad, Processing Maps: A Status Report, J. Mater. Eng. Perform., 2003, 12, p 638–645CrossRef
24.
Zurück zum Zitat A. Momeni and K. Dehghani, Characterization of Hot Deformation Behavior of 410 Martensitic Stainless Steel Using Constitutive Equations and Processing Maps, Mater. Sci. Eng. A, 2010, 527, p 5467–5473CrossRef A. Momeni and K. Dehghani, Characterization of Hot Deformation Behavior of 410 Martensitic Stainless Steel Using Constitutive Equations and Processing Maps, Mater. Sci. Eng. A, 2010, 527, p 5467–5473CrossRef
25.
Zurück zum Zitat G. Brij Kishor, P. Chaudhari, and S.K. Nath, Hot Deformation Characteristics of 13Cr-4Ni Stainless Steel Using Constitutive Equation and Processing Map, J. Mater. Eng. Perform., 2016, 25, p 2651–2660CrossRef G. Brij Kishor, P. Chaudhari, and S.K. Nath, Hot Deformation Characteristics of 13Cr-4Ni Stainless Steel Using Constitutive Equation and Processing Map, J. Mater. Eng. Perform., 2016, 25, p 2651–2660CrossRef
26.
Zurück zum Zitat G.Z. Quan, L. Zhang, X. Wang, and Y.L. Li, Correspondence Between Microstructural Evolution Mechanisms and Hot Processing Parameters for Ti-13Nb-13Zr Biomedical Alloy in Comprehensive Processing Maps, J. Alloys Compd., 2017, 698, p 178–193CrossRef G.Z. Quan, L. Zhang, X. Wang, and Y.L. Li, Correspondence Between Microstructural Evolution Mechanisms and Hot Processing Parameters for Ti-13Nb-13Zr Biomedical Alloy in Comprehensive Processing Maps, J. Alloys Compd., 2017, 698, p 178–193CrossRef
27.
Zurück zum Zitat Y. Dong, C. Zhang, G. Zhao, Y. Guan, and A. Gao, Constitutive Equation and Processing Maps of an Al–Mg–Si Aluminum Alloy: Determination and Application in Simulating Extrusion Process of Complex Profiles, Mater. Des., 2016, 92, p 983–997CrossRef Y. Dong, C. Zhang, G. Zhao, Y. Guan, and A. Gao, Constitutive Equation and Processing Maps of an Al–Mg–Si Aluminum Alloy: Determination and Application in Simulating Extrusion Process of Complex Profiles, Mater. Des., 2016, 92, p 983–997CrossRef
28.
Zurück zum Zitat X.Z. Kai, C. Chen, X. Sun, C. Wang, and Y. Zhao, Hot Deformation Behavior and Optimization Of Processing Parameters of a Typical High-Strength Al–Mg–Si Alloy, Mater. Des., 2016, 90, p 1151–1158CrossRef X.Z. Kai, C. Chen, X. Sun, C. Wang, and Y. Zhao, Hot Deformation Behavior and Optimization Of Processing Parameters of a Typical High-Strength Al–Mg–Si Alloy, Mater. Des., 2016, 90, p 1151–1158CrossRef
29.
Zurück zum Zitat S.A. Sajjadi, A. Chaichi, H.R. Ezatpour, A. Maghsoudlou, and M.A. Kalaie, Hot Deformation Processing Map and Microstructural Evaluation of the Ni-Based Superalloy IN-738LC, J. Mater. Eng. Perform., 2016, 25, p 1269–1275CrossRef S.A. Sajjadi, A. Chaichi, H.R. Ezatpour, A. Maghsoudlou, and M.A. Kalaie, Hot Deformation Processing Map and Microstructural Evaluation of the Ni-Based Superalloy IN-738LC, J. Mater. Eng. Perform., 2016, 25, p 1269–1275CrossRef
30.
Zurück zum Zitat J.J. Jonas, C.M. Sellars, and W.J.M. Tegart, Strength and Structure Under Hot-Working Conditions, Metall. Rev., 1969, 14, p 1–24 J.J. Jonas, C.M. Sellars, and W.J.M. Tegart, Strength and Structure Under Hot-Working Conditions, Metall. Rev., 1969, 14, p 1–24
31.
Zurück zum Zitat P. Dadras and J.F. Thomas, Characterization and Modeling for Forging Deformation of Ti-6Ai-2Sn-4Zr-2Mo-0.1 Si, Metall. Trans. A, 1981, 12, p 1867–1876CrossRef P. Dadras and J.F. Thomas, Characterization and Modeling for Forging Deformation of Ti-6Ai-2Sn-4Zr-2Mo-0.1 Si, Metall. Trans. A, 1981, 12, p 1867–1876CrossRef
32.
Zurück zum Zitat S.V.S.N. Murty and B.N. Rao, On the Development of Instability Criteria During Hotworking with Reference to IN 718, Mater. Sci. Eng. A, 1998, 254, p 76–82CrossRef S.V.S.N. Murty and B.N. Rao, On the Development of Instability Criteria During Hotworking with Reference to IN 718, Mater. Sci. Eng. A, 1998, 254, p 76–82CrossRef
33.
Zurück zum Zitat M.R. Rokni, A. Zarei-Hanzaki, A.A. Roostaei, and H.R. Abedi, An Investigation into the Hot Deformation Characteristics of 7075 Aluminum Alloy, Mater. Des., 2011, 32, p 2339–2344CrossRef M.R. Rokni, A. Zarei-Hanzaki, A.A. Roostaei, and H.R. Abedi, An Investigation into the Hot Deformation Characteristics of 7075 Aluminum Alloy, Mater. Des., 2011, 32, p 2339–2344CrossRef
34.
Zurück zum Zitat E.I. Poliak and J.J. Jonas, A one-Parameter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization, Acta. Mater., 1996, 44, p 127–136CrossRef E.I. Poliak and J.J. Jonas, A one-Parameter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization, Acta. Mater., 1996, 44, p 127–136CrossRef
35.
Zurück zum Zitat C.M. Sellars and W.J. Mctegart, On the Mechanism of Hot Deformation, Acta. Metall., 1996, 14, p 1136–1138CrossRef C.M. Sellars and W.J. Mctegart, On the Mechanism of Hot Deformation, Acta. Metall., 1996, 14, p 1136–1138CrossRef
36.
Zurück zum Zitat H. Wu, S.P. Wen, H. Huang, X.L. Wu, K.Y. Gao, W. Wang, and Z.R. Nie, Hot Deformation Behavior and Constitutive Equation of a New Type Al–Zn–Mg–Er–Zr Alloy During Isothermal Compression, Mater. Sci. Eng. A, 2016, 651, p 415–424CrossRef H. Wu, S.P. Wen, H. Huang, X.L. Wu, K.Y. Gao, W. Wang, and Z.R. Nie, Hot Deformation Behavior and Constitutive Equation of a New Type Al–Zn–Mg–Er–Zr Alloy During Isothermal Compression, Mater. Sci. Eng. A, 2016, 651, p 415–424CrossRef
37.
Zurück zum Zitat J. Cai, F. Li, T. Liu, B. Chen, and M. He, Constitutive Equations for Elevated Temperature Flow Stress of Ti–6Al–4V Alloy Considering the Effect of Strain, Mater. Des., 2011, 32, p 1144–1151CrossRef J. Cai, F. Li, T. Liu, B. Chen, and M. He, Constitutive Equations for Elevated Temperature Flow Stress of Ti–6Al–4V Alloy Considering the Effect of Strain, Mater. Des., 2011, 32, p 1144–1151CrossRef
38.
Zurück zum Zitat S. Mandal, V. Rakesh, P.V. Sivaprasad, S. Venugopal, and K.V. Kasiviswanathan, Constitutive Equations to Predict High Temperature Flow Stress in a Ti-modified Austenitic Stainless Steel, Mater. Sci. Eng. A, 2009, 500, p 114–121CrossRef S. Mandal, V. Rakesh, P.V. Sivaprasad, S. Venugopal, and K.V. Kasiviswanathan, Constitutive Equations to Predict High Temperature Flow Stress in a Ti-modified Austenitic Stainless Steel, Mater. Sci. Eng. A, 2009, 500, p 114–121CrossRef
39.
Zurück zum Zitat J. Xin, L. Zhang, G. Ge, and J. Lin, Characterization of Microstructure Evolution in β-γ TiAl Alloy Containing High Content of Niobium Using Constitutive Equation and Power Dissipation Map, Mater. Des., 2016, 107, p 406–415CrossRef J. Xin, L. Zhang, G. Ge, and J. Lin, Characterization of Microstructure Evolution in β-γ TiAl Alloy Containing High Content of Niobium Using Constitutive Equation and Power Dissipation Map, Mater. Des., 2016, 107, p 406–415CrossRef
40.
Zurück zum Zitat L. Wang, F. Liu, J.J. Cheng, Q. Zuo, and C.F. Chen, Hot Deformation Characteristics and Processing Map Analysis for Nickel-Based Corrosion Resistant Alloy, J. Alloys compd., 2015, 623, p 69–78CrossRef L. Wang, F. Liu, J.J. Cheng, Q. Zuo, and C.F. Chen, Hot Deformation Characteristics and Processing Map Analysis for Nickel-Based Corrosion Resistant Alloy, J. Alloys compd., 2015, 623, p 69–78CrossRef
41.
Zurück zum Zitat S.Y. Park and W.J. Kim, Difference in the Hot Compressive Behavior and Processing Maps Between the As-cast and Homogenized Al-Zn-Mg-Cu(7075) Alloys, J. Mater. Sci. Technol., 2016, 32, p 660–670CrossRef S.Y. Park and W.J. Kim, Difference in the Hot Compressive Behavior and Processing Maps Between the As-cast and Homogenized Al-Zn-Mg-Cu(7075) Alloys, J. Mater. Sci. Technol., 2016, 32, p 660–670CrossRef
42.
Zurück zum Zitat M.G. Jiang, H. Yan, and R.S. Chen, Microstructure, Texture and Mechanical Properties in an as-Cast AZ61 Mg Alloy During Multi-directional Impact Forging and Subsequent Heat Treatment, Mater. Des., 2015, 87, p 891–900CrossRef M.G. Jiang, H. Yan, and R.S. Chen, Microstructure, Texture and Mechanical Properties in an as-Cast AZ61 Mg Alloy During Multi-directional Impact Forging and Subsequent Heat Treatment, Mater. Des., 2015, 87, p 891–900CrossRef
43.
Zurück zum Zitat Y. Wu, M. Zhang, X. Xie, J. Dong, and F. Lin, Hot Deformation Characteristics and Processing Map Analysis of a New Designed Nickel-Based Alloy for 700 °C A-USC Power Plant, J. Alloys Compd., 2016, 656, p 119–131CrossRef Y. Wu, M. Zhang, X. Xie, J. Dong, and F. Lin, Hot Deformation Characteristics and Processing Map Analysis of a New Designed Nickel-Based Alloy for 700 °C A-USC Power Plant, J. Alloys Compd., 2016, 656, p 119–131CrossRef
44.
Zurück zum Zitat A. Chiba, S.H. Lee, H. Matsumoto, and M. Nakamura, Construction of Processing Map for Biomedical Co–28Cr–6Mo–0.16N Alloy by Studying its Hot Deformation Behavior Using Compression Tests, Mater. Sci. Eng. A, 2009, 513, p 286–293CrossRef A. Chiba, S.H. Lee, H. Matsumoto, and M. Nakamura, Construction of Processing Map for Biomedical Co–28Cr–6Mo–0.16N Alloy by Studying its Hot Deformation Behavior Using Compression Tests, Mater. Sci. Eng. A, 2009, 513, p 286–293CrossRef
Metadaten
Titel
Hot Deformation Characteristics and Processing Map of FV520B Martensitic Precipitation-Hardened Stainless Steel
verfasst von
Dan Huang
Wei Feng
Publikationsdatum
12.03.2019
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 4/2019
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-03974-8

Weitere Artikel der Ausgabe 4/2019

Journal of Materials Engineering and Performance 4/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.