Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 7/2017

05.06.2017

Hot Deformation Mechanisms of an As-Extruded TiAl Alloy with Large Amount of Remnant Lamellae

verfasst von: Hongwu Liu, Rong Rong, Fan Gao, Yanguo Liu, Zhenxi Li, Qingfeng Wang

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 7/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The hot deformation mechanisms of an as-extruded Ti-44Al-5V-1Cr alloy with a large amount of remnant lamellae were investigated by hot compression tests at temperatures of 900-1250 °C and strain rates of 0.001-1 s−1. The hot processing map of the as-extruded Ti-44Al-5V-1Cr alloy was developed on the basis of dynamic materials modeling and the Prasad criteria. There were four different domains in the hot processing map, according to the efficiency of power dissipation, η. The flow soft and hot deformation mechanisms for different domains were illustrated in the context of microstructural evolution during the process of deformation. As a result, the dynamic recrystallization and superplastic deformation occurred at 1125-1150 °C near 0.001 s−1, and this region is suitable for superplastic forming. The α phase dynamic recrystallization and dynamic recovery occurred at 1250 °C and 0.1 s−1. The existence of small amount of the γ and β phases effectively inhibited the growth of α grains.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Yamaguchi, H. Inui, and K. Ito, High-Temperature Structural Intermetallics, Acta Mater., 2000, 48, p 307–322CrossRef M. Yamaguchi, H. Inui, and K. Ito, High-Temperature Structural Intermetallics, Acta Mater., 2000, 48, p 307–322CrossRef
2.
Zurück zum Zitat R.K. Gupta, B. Pant, and P.P. Sinha, Theory and Practice of γ + α2 Ti Aluminide: A Review, Trans. Indian Inst. Met., 2013, 67, p 143–165CrossRef R.K. Gupta, B. Pant, and P.P. Sinha, Theory and Practice of γ + α2 Ti Aluminide: A Review, Trans. Indian Inst. Met., 2013, 67, p 143–165CrossRef
3.
Zurück zum Zitat K. Kothari, R. Radhakrishnan, and N.M. Wereley, Advances in Gamma Titanium Aluminides and Their Manufacturing Techniques, Prog. Aerosp. Sci., 2012, 55, p 1–16CrossRef K. Kothari, R. Radhakrishnan, and N.M. Wereley, Advances in Gamma Titanium Aluminides and Their Manufacturing Techniques, Prog. Aerosp. Sci., 2012, 55, p 1–16CrossRef
4.
Zurück zum Zitat G. Das, H. Kestler, H. Clemens, and P.A. Bartolotta, Sheet Gamma TiAl: Status and Opportunities, JOM, 2004, 56, p 42–45CrossRef G. Das, H. Kestler, H. Clemens, and P.A. Bartolotta, Sheet Gamma TiAl: Status and Opportunities, JOM, 2004, 56, p 42–45CrossRef
5.
Zurück zum Zitat G. Das, P.A. Bartolotta, H. Kestler et al., The Sheet Gamma-TiAl Technology Developed Under the Enabling Propulsion Materials/High Speed Civil Transport (EPM/HSCT) Program: Sheet Production and Component Fabrication, Struct. Intermet., 2001, 2001, p 121–130 G. Das, P.A. Bartolotta, H. Kestler et al., The Sheet Gamma-TiAl Technology Developed Under the Enabling Propulsion Materials/High Speed Civil Transport (EPM/HSCT) Program: Sheet Production and Component Fabrication, Struct. Intermet., 2001, 2001, p 121–130
6.
Zurück zum Zitat H. Clemens, W. Glatz, N. Eberhardt, H.-P. Martinz, and W. Knabl, Processing, Properties and Applications of Gamma Titanium Aluminide Sheet and Foil Materials, in Symposium Z—High-Temperature Ordered Intermetallic Alloys VII (1996), p. 29 H. Clemens, W. Glatz, N. Eberhardt, H.-P. Martinz, and W. Knabl, Processing, Properties and Applications of Gamma Titanium Aluminide Sheet and Foil Materials, in Symposium ZHigh-Temperature Ordered Intermetallic Alloys VII (1996), p. 29
7.
Zurück zum Zitat X. Wu, Review of Alloy and Process Development of TiAl Alloys, Intermetallics, 2006, 14, p 1114–1122CrossRef X. Wu, Review of Alloy and Process Development of TiAl Alloys, Intermetallics, 2006, 14, p 1114–1122CrossRef
8.
Zurück zum Zitat Y. Sun, Z. Wan, L. Hu, and J. Ren, Characterization of Hot Processing Parameters of Powder Metallurgy TiAl-Based Alloy Based on the Activation Energy Map and Processing Map, Mater. Des., 2015, 86, p 922–932CrossRef Y. Sun, Z. Wan, L. Hu, and J. Ren, Characterization of Hot Processing Parameters of Powder Metallurgy TiAl-Based Alloy Based on the Activation Energy Map and Processing Map, Mater. Des., 2015, 86, p 922–932CrossRef
9.
Zurück zum Zitat L. Cheng, H. Chang, B. Tang, H. Kou, and J. Li, Deformation and Dynamic Recrystallization Behavior of a High Nb Containing TiAl Alloy, J. Alloys Compd., 2013, 552, p 363–369CrossRef L. Cheng, H. Chang, B. Tang, H. Kou, and J. Li, Deformation and Dynamic Recrystallization Behavior of a High Nb Containing TiAl Alloy, J. Alloys Compd., 2013, 552, p 363–369CrossRef
10.
Zurück zum Zitat J. Xin, L. Zhang, G. Ge, and J. Lin, Characterization of Microstructure Evolution in β-γ TiAl Alloy Containing High Content of Niobium Using Constitutive Equation and Power Dissipation Map, Mater. Des., 2016, 107, p 406–415CrossRef J. Xin, L. Zhang, G. Ge, and J. Lin, Characterization of Microstructure Evolution in β-γ TiAl Alloy Containing High Content of Niobium Using Constitutive Equation and Power Dissipation Map, Mater. Des., 2016, 107, p 406–415CrossRef
11.
Zurück zum Zitat H.Z. Niu, Y.F. Chen, Y.S. Zhang, J.W. Lu, W. Zhang, and P.X. Zhang, Phase Transformation and Dynamic Recrystallization Behavior of a β-Solidifying γ-TiAl Alloy and Its Wrought Microstructure Control, Mater. Des., 2016, 90, p 196–203CrossRef H.Z. Niu, Y.F. Chen, Y.S. Zhang, J.W. Lu, W. Zhang, and P.X. Zhang, Phase Transformation and Dynamic Recrystallization Behavior of a β-Solidifying γ-TiAl Alloy and Its Wrought Microstructure Control, Mater. Des., 2016, 90, p 196–203CrossRef
12.
Zurück zum Zitat Y. Wang, Y. Liu, G.Y. Yang, J.B. Li, B. Liu, J.W. Wang, and H.Z. Li, Hot Deformation Behaviors of β Phase Containing Ti-43Al-4Nb-1.4W-Based Alloy, Mater. Sci. Eng. A, 2013, 2013(577), p 210–217CrossRef Y. Wang, Y. Liu, G.Y. Yang, J.B. Li, B. Liu, J.W. Wang, and H.Z. Li, Hot Deformation Behaviors of β Phase Containing Ti-43Al-4Nb-1.4W-Based Alloy, Mater. Sci. Eng. A, 2013, 2013(577), p 210–217CrossRef
13.
Zurück zum Zitat E. Schwaighofer, H. Clemens, J. Lindemann, A. Stark, and S. Mayer, Hot-Working Behavior of an Advanced Intermetallic Multi-Phase γ-TiAl Based Alloy, Mater. Sci. Eng. A, 2014, 614, p 297–310CrossRef E. Schwaighofer, H. Clemens, J. Lindemann, A. Stark, and S. Mayer, Hot-Working Behavior of an Advanced Intermetallic Multi-Phase γ-TiAl Based Alloy, Mater. Sci. Eng. A, 2014, 614, p 297–310CrossRef
14.
Zurück zum Zitat W.-J. Zhang, U. Lorenz, and F. Appel, Recovery, Recrystallization and Phase Transformations During Thermomechanical Processing and Treatment of TiAl-Based Alloys, Acta Mater., 2000, 48, p 2803–2813CrossRef W.-J. Zhang, U. Lorenz, and F. Appel, Recovery, Recrystallization and Phase Transformations During Thermomechanical Processing and Treatment of TiAl-Based Alloys, Acta Mater., 2000, 48, p 2803–2813CrossRef
15.
Zurück zum Zitat T. Tetsui, K. Shindo, S. Kobayashi, and M. Takeyama, A Newly Developed Hot Worked TiAl Alloy for Blades and Structural Components, Scr. Mater., 2002, 47, p 399–403CrossRef T. Tetsui, K. Shindo, S. Kobayashi, and M. Takeyama, A Newly Developed Hot Worked TiAl Alloy for Blades and Structural Components, Scr. Mater., 2002, 47, p 399–403CrossRef
16.
Zurück zum Zitat T. Tetsui, K. Shindo, S. Kaji, S. Kobayashi, and M. Takeyama, Fabrication of TiAl Components by Means of Hot Forging and Machining, Intermetallics, 2005, 13, p 971–978CrossRef T. Tetsui, K. Shindo, S. Kaji, S. Kobayashi, and M. Takeyama, Fabrication of TiAl Components by Means of Hot Forging and Machining, Intermetallics, 2005, 13, p 971–978CrossRef
17.
Zurück zum Zitat H. Clemens and S. Mayer, Design, Processing, Microstructure, Properties, and Applications of Advanced Intermetallic TiAl Alloys, Adv. Eng. Mater., 2013, 15, p 191–215CrossRef H. Clemens and S. Mayer, Design, Processing, Microstructure, Properties, and Applications of Advanced Intermetallic TiAl Alloys, Adv. Eng. Mater., 2013, 15, p 191–215CrossRef
18.
Zurück zum Zitat G.E. Dieter, Mechanical Metallurgy, McGraw Hill Higher Education, Boston, 1989 G.E. Dieter, Mechanical Metallurgy, McGraw Hill Higher Education, Boston, 1989
19.
Zurück zum Zitat T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, and Y.V.R.K. Prasad, Hot Working of Commercial Ti-6Al-4V with an Equiaxed α-β Microstructure: Materials Modeling Considerations, Mater. Sci. Eng. A, 2000, 284, p 184–194CrossRef T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, and Y.V.R.K. Prasad, Hot Working of Commercial Ti-6Al-4V with an Equiaxed α-β Microstructure: Materials Modeling Considerations, Mater. Sci. Eng. A, 2000, 284, p 184–194CrossRef
20.
Zurück zum Zitat F. Appel, J.D.H. Paul, and M. Oehring, Gamma Titanium Aluminides-Science and Technology, Wiley VCH, Weinheim, 2011CrossRef F. Appel, J.D.H. Paul, and M. Oehring, Gamma Titanium Aluminides-Science and Technology, Wiley VCH, Weinheim, 2011CrossRef
21.
Zurück zum Zitat S.L. Semiatin, N. Frey, C.R. Thompson, J.D. Bryant, S. El-Soudani, and R. Tisler, Plastic Flow Behavior of Ti-48Al-2.5Nb-0.3Ta at Hot-Working Temperatures, Scr. Metall. Mater., 1990, 24, p 1403–1408CrossRef S.L. Semiatin, N. Frey, C.R. Thompson, J.D. Bryant, S. El-Soudani, and R. Tisler, Plastic Flow Behavior of Ti-48Al-2.5Nb-0.3Ta at Hot-Working Temperatures, Scr. Metall. Mater., 1990, 24, p 1403–1408CrossRef
22.
Zurück zum Zitat Y.V.R.K. Prasad and S. Sasidhara, Hot Working Guide: A Compendium of Processing Maps, ASM International, Russell, 1997 Y.V.R.K. Prasad and S. Sasidhara, Hot Working Guide: A Compendium of Processing Maps, ASM International, Russell, 1997
23.
Zurück zum Zitat Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker, Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-6242, Metall. Trans. A, 1984, 15, p 1883–1892CrossRef Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker, Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-6242, Metall. Trans. A, 1984, 15, p 1883–1892CrossRef
24.
Zurück zum Zitat Y.V.R.K. Prasad and T. Seshacharyulu, Modelling of Hot Deformation for Microstructural Control, Int. Mater. Rev., 1998, 43, p 243–258CrossRef Y.V.R.K. Prasad and T. Seshacharyulu, Modelling of Hot Deformation for Microstructural Control, Int. Mater. Rev., 1998, 43, p 243–258CrossRef
25.
Zurück zum Zitat M.S.I.T. Msit®, Light Metal System Part 4, Al-Ti-V (Aluminium-Titanium-Vanadium), G. Effenberg and S. Ilyenko, Ed., Springer, Berlin, 2006, p 1–28 doi:10.1007/11008514_4 M.S.I.T. Msit®, Light Metal System Part 4, Al-Ti-V (Aluminium-Titanium-Vanadium), G. Effenberg and S. Ilyenko, Ed., Springer, Berlin, 2006, p 1–28 doi:10.​1007/​11008514_​4
26.
Zurück zum Zitat Y.Y. Chen, F. Yang, F.T. Kong, and S.L. Xiao, Microstructure, Mechanical Properties, Hot Deformation and Oxidation Behavior of Ti-45Al-5.4V-3.6Nb-0.3Y Alloy, J. Alloys Compd., 2010, 498, p 95–101CrossRef Y.Y. Chen, F. Yang, F.T. Kong, and S.L. Xiao, Microstructure, Mechanical Properties, Hot Deformation and Oxidation Behavior of Ti-45Al-5.4V-3.6Nb-0.3Y Alloy, J. Alloys Compd., 2010, 498, p 95–101CrossRef
27.
Zurück zum Zitat J.H. Kim, Y.W. Chang, C.S. Lee, and T.K. Ha, High-Temperature Deformation Behavior of a Gamma TiAl Alloy—Microstructural Evolution and Mechanisms, Metall. Mater. Trans. A, 2003, 34, p 2165–2176CrossRef J.H. Kim, Y.W. Chang, C.S. Lee, and T.K. Ha, High-Temperature Deformation Behavior of a Gamma TiAl Alloy—Microstructural Evolution and Mechanisms, Metall. Mater. Trans. A, 2003, 34, p 2165–2176CrossRef
28.
Zurück zum Zitat W. Zhang, Y. Liu, H.Z. Li, Z. Li, H. Wang, and B. Liu, Constitutive Modeling and Processing Map for Elevated Temperature Flow Behaviors of a Powder Metallurgy Titanium Aluminide Alloy, J. Mater. Process. Technol., 2009, 209, p 5363–5370CrossRef W. Zhang, Y. Liu, H.Z. Li, Z. Li, H. Wang, and B. Liu, Constitutive Modeling and Processing Map for Elevated Temperature Flow Behaviors of a Powder Metallurgy Titanium Aluminide Alloy, J. Mater. Process. Technol., 2009, 209, p 5363–5370CrossRef
29.
Zurück zum Zitat T.G. Nieh, L.M. Hsiung, and J. Wadsworth, Superplastic Behavior of a Powder Metallurgy TiAl Alloy with a Metastable Microstructure, Intermetallics, 1999, 7, p 163–170CrossRef T.G. Nieh, L.M. Hsiung, and J. Wadsworth, Superplastic Behavior of a Powder Metallurgy TiAl Alloy with a Metastable Microstructure, Intermetallics, 1999, 7, p 163–170CrossRef
30.
Zurück zum Zitat D. Vanderschueren, M. Nobuki, and M. Nakamura, Superplasticity in a Vanadium Alloyed Gamma Plus Beta Phased Ti-Al Intermetallic, Scr. Metall. Mater., 1993, 28, p 605–610CrossRef D. Vanderschueren, M. Nobuki, and M. Nakamura, Superplasticity in a Vanadium Alloyed Gamma Plus Beta Phased Ti-Al Intermetallic, Scr. Metall. Mater., 1993, 28, p 605–610CrossRef
31.
Zurück zum Zitat V. Imayev, R. Gaisin, A. Rudskoy, T. Nazarova, R. Shaimardanov, and R. Imayev, Extraordinary Superplastic Properties of Hot Worked Ti-45Al-8Nb-0.2C Alloy, J. Alloys Compd., 2016, 663, p 217–224CrossRef V. Imayev, R. Gaisin, A. Rudskoy, T. Nazarova, R. Shaimardanov, and R. Imayev, Extraordinary Superplastic Properties of Hot Worked Ti-45Al-8Nb-0.2C Alloy, J. Alloys Compd., 2016, 663, p 217–224CrossRef
32.
Zurück zum Zitat J. Wadsworth, Fine Structure Superplastic Intermetallics, Int. Mater. Rev., 1999, 44, p 59–75CrossRef J. Wadsworth, Fine Structure Superplastic Intermetallics, Int. Mater. Rev., 1999, 44, p 59–75CrossRef
33.
Zurück zum Zitat H.Z. Niu, F.T. Kong, S.L. Xiao, Y.Y. Chen, and F. Yang, Effect of Pack Rolling on Microstructures and Tensile Properties of As-Forged Ti-44Al-6V-3Nb-0.3Y Alloy, Intermetallics, 2012, 21, p 97–104CrossRef H.Z. Niu, F.T. Kong, S.L. Xiao, Y.Y. Chen, and F. Yang, Effect of Pack Rolling on Microstructures and Tensile Properties of As-Forged Ti-44Al-6V-3Nb-0.3Y Alloy, Intermetallics, 2012, 21, p 97–104CrossRef
34.
Zurück zum Zitat F. Kong, N. Cui, Y. Chen, and N. Xiong, The Hot Deformation Behavior of Ti-43Al-9V-Y Alloy, Acta Metall. Sin., 2013, 49, p 1363CrossRef F. Kong, N. Cui, Y. Chen, and N. Xiong, The Hot Deformation Behavior of Ti-43Al-9V-Y Alloy, Acta Metall. Sin., 2013, 49, p 1363CrossRef
Metadaten
Titel
Hot Deformation Mechanisms of an As-Extruded TiAl Alloy with Large Amount of Remnant Lamellae
verfasst von
Hongwu Liu
Rong Rong
Fan Gao
Yanguo Liu
Zhenxi Li
Qingfeng Wang
Publikationsdatum
05.06.2017
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 7/2017
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-017-2592-z

Weitere Artikel der Ausgabe 7/2017

Journal of Materials Engineering and Performance 7/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.