Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 2/2019

18.01.2019

Hot Deformation Mechanisms of Ti22Al25Nb Orthorhombic Alloy

verfasst von: Jingli Zhang, Jingping Wu, Yuanyuan Luo, Xiaonan Mao, Dizi Guo, Shengze Zhao, Fan Yang

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, the hot deformation behavior of Ti22Al25Nb was investigated by hot compression over a range of temperatures (950-1050 °C) and strain rates (0.001-1 s−1). Considering the adiabatic heating and friction, the original curves were corrected. The friction-corrected data were lower than the measured flow stress data. The flow stress data increased after the temperature correction owing to the elimination of the softening effect. In addition, the work hardening effects on the hot deformation of the normal and multi-peak flow stress curves were compared. A critical dislocation density was proposed to analyze the multi-peak phenomenon. When the dislocation density decreased to a critical value, the work hardening and dynamic recrystallization mechanisms reached a balance. Then, a new work hardening mechanism became dominant, and the flow stress increased. The effect of second-phase particles on the hot deformation mechanisms was investigated. The result showed that second-phase particles led to a high nucleation rate and a low growth rate of new recrystallization grains during the rapid hot deformation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. Banerjee, The Intermetallic Ti2AlNb, Prog. Mater Sci., 1997, 42(1–4), p 135–138CrossRef D. Banerjee, The Intermetallic Ti2AlNb, Prog. Mater Sci., 1997, 42(1–4), p 135–138CrossRef
2.
Zurück zum Zitat Z.L. Lei, Z.J. Dong, Y.B. Chen et al., Microstructure and Mechanical Properties of Laser Welded Ti-22Al-27Nb/TC4 Dissimilar Alloys, Mater. Sci. Eng., A, 2013, 559, p 909–916CrossRef Z.L. Lei, Z.J. Dong, Y.B. Chen et al., Microstructure and Mechanical Properties of Laser Welded Ti-22Al-27Nb/TC4 Dissimilar Alloys, Mater. Sci. Eng., A, 2013, 559, p 909–916CrossRef
3.
Zurück zum Zitat C. Qin, Z.K. Yao, Y.Z. Li et al., Effect of Hot Working on Microstructure and Mechanical Properties of TC11/Ti2AlNb Dual-Alloy Joint Welded by Electron Beam Welding Process, Trans. Nonferrous Metals Soc. China, 2014, 24(11), p 3500–3508CrossRef C. Qin, Z.K. Yao, Y.Z. Li et al., Effect of Hot Working on Microstructure and Mechanical Properties of TC11/Ti2AlNb Dual-Alloy Joint Welded by Electron Beam Welding Process, Trans. Nonferrous Metals Soc. China, 2014, 24(11), p 3500–3508CrossRef
4.
Zurück zum Zitat C.J. Cowen and C.J. Boehlert, Microstructure, Creep, and Tensile Behavior of a Ti–21Al–29Nb (at.%) Orthorhombic +B2 Alloy, Intermetallics, 2006, 14(4), p 412–422CrossRef C.J. Cowen and C.J. Boehlert, Microstructure, Creep, and Tensile Behavior of a Ti–21Al–29Nb (at.%) Orthorhombic +B2 Alloy, Intermetallics, 2006, 14(4), p 412–422CrossRef
5.
Zurück zum Zitat M. Hagiwara, A. Araoka, S.J. Yang et al., The Effect of Lamellar Morphology on Tensile and High-Cycle Fatigue Behavior of Orthorhombic Ti-22Al-27Nb Alloy, Metall. Mater. Trans. A, 2004, 35(7), p 2161–2170CrossRef M. Hagiwara, A. Araoka, S.J. Yang et al., The Effect of Lamellar Morphology on Tensile and High-Cycle Fatigue Behavior of Orthorhombic Ti-22Al-27Nb Alloy, Metall. Mater. Trans. A, 2004, 35(7), p 2161–2170CrossRef
6.
Zurück zum Zitat F.A. Sadi, C. Servant, and G. Cizeron, Phase Transformations in Ti-29.7 Al-21.8 Nb and Ti-23.4 Al-31.7Nb (at.%) Alloys, Mater. Sci. Eng. A, 2001, 311(1–2), p 185–199CrossRef F.A. Sadi, C. Servant, and G. Cizeron, Phase Transformations in Ti-29.7 Al-21.8 Nb and Ti-23.4 Al-31.7Nb (at.%) Alloys, Mater. Sci. Eng. A, 2001, 311(1–2), p 185–199CrossRef
7.
Zurück zum Zitat S. Emura, A. Araoka, and M. Hagiwara, B2 Grain Size Refinement and Its Effect on Room Temperature Tensile Properties of a Ti–22Al–27Nb Orthorhombic Intermetallic Alloy, Scri. Mater., 2003, 48(5), p 629–634CrossRef S. Emura, A. Araoka, and M. Hagiwara, B2 Grain Size Refinement and Its Effect on Room Temperature Tensile Properties of a Ti–22Al–27Nb Orthorhombic Intermetallic Alloy, Scri. Mater., 2003, 48(5), p 629–634CrossRef
8.
Zurück zum Zitat J. Jia, K. Zhang, and Z. Lu, Dynamic Globularization Kinetics of a Powder Metallurgy Ti–22Al–25Nb Alloy with Initial Lamellar Microstructure During Hot Compression, J. Alloys Compd., 2014, 617, p 429–436CrossRef J. Jia, K. Zhang, and Z. Lu, Dynamic Globularization Kinetics of a Powder Metallurgy Ti–22Al–25Nb Alloy with Initial Lamellar Microstructure During Hot Compression, J. Alloys Compd., 2014, 617, p 429–436CrossRef
9.
Zurück zum Zitat H. Hallberg, B. Svendsen, T. Kayser et al., Microstructure Evolution During Dynamic Discontinuous Recrystallization in Particle-Containing Cu, Comput. Mater. Sci., 2014, 84, p 327–338CrossRef H. Hallberg, B. Svendsen, T. Kayser et al., Microstructure Evolution During Dynamic Discontinuous Recrystallization in Particle-Containing Cu, Comput. Mater. Sci., 2014, 84, p 327–338CrossRef
10.
Zurück zum Zitat F. Montheillet, O. Lurdos, and G. Damamme, A Grain Scale Approach for Modeling Steady-State Discontinuous Dynamic Recrystallization, Acta Mater., 2009, 57(5), p 1602–1612CrossRef F. Montheillet, O. Lurdos, and G. Damamme, A Grain Scale Approach for Modeling Steady-State Discontinuous Dynamic Recrystallization, Acta Mater., 2009, 57(5), p 1602–1612CrossRef
11.
Zurück zum Zitat Y. Ning, C. Zhou, H. Liang et al., Abnormal Flow Behavior and Necklace Microstructure of Powder Metallurgy Superalloys with Previous Particle Boundaries (PPBs), Mater. Sci. Eng., A, 2016, 652, p 84–91CrossRef Y. Ning, C. Zhou, H. Liang et al., Abnormal Flow Behavior and Necklace Microstructure of Powder Metallurgy Superalloys with Previous Particle Boundaries (PPBs), Mater. Sci. Eng., A, 2016, 652, p 84–91CrossRef
12.
Zurück zum Zitat H. Yamagata, Y. Ohuchida, N. Saito et al., Nucleation of new grains during discontinuous dynamic recrystallization of 99.998 mass% aluminum at 453K, Scr. Mater., 2001, 45(9), p 1055–1061CrossRef H. Yamagata, Y. Ohuchida, N. Saito et al., Nucleation of new grains during discontinuous dynamic recrystallization of 99.998 mass% aluminum at 453K, Scr. Mater., 2001, 45(9), p 1055–1061CrossRef
13.
Zurück zum Zitat C. Shi, J. Lai, and X.G. Chen, Microstructural Evolution and Dynamic Softening Mechanisms of Al-Zn-Mg-Cu Alloy during Hot Compressive Deformation, Mater., 2014, 7(1), p 244–264CrossRef C. Shi, J. Lai, and X.G. Chen, Microstructural Evolution and Dynamic Softening Mechanisms of Al-Zn-Mg-Cu Alloy during Hot Compressive Deformation, Mater., 2014, 7(1), p 244–264CrossRef
14.
Zurück zum Zitat W. Wang, W. Zeng, C. Xue et al., Microstructural Evolution, Creep, Tensile Behavior of a Ti-22Al-25Nb (at.%) Orthorhombic Alloy, Mater. Sci. Eng., A, 2014, 603, p 176–184CrossRef W. Wang, W. Zeng, C. Xue et al., Microstructural Evolution, Creep, Tensile Behavior of a Ti-22Al-25Nb (at.%) Orthorhombic Alloy, Mater. Sci. Eng., A, 2014, 603, p 176–184CrossRef
15.
Zurück zum Zitat Y. Zhang, Y. Han, G. Chen, J. Guo, X. Wan, and D. Feng, Structural Intermetallics, National Defense Industry Press, Beijing, 2001, p 785–831 (in Chinese) Y. Zhang, Y. Han, G. Chen, J. Guo, X. Wan, and D. Feng, Structural Intermetallics, National Defense Industry Press, Beijing, 2001, p 785–831 (in Chinese)
16.
Zurück zum Zitat T. Hongjie, Research on Preparation Process of Ti2AlNb/Ti60 Dual Alloy, Northwestern Polytechnical University, Xi’an, 2013, p 6–23 (in Chinese) T. Hongjie, Research on Preparation Process of Ti2AlNb/Ti60 Dual Alloy, Northwestern Polytechnical University, Xi’an, 2013, p 6–23 (in Chinese)
17.
Zurück zum Zitat L.C. Limu Hu and M. Li, Material Forming Principle, China Machine Press, Beijing, 2005, p 20–56 (in Chinese) L.C. Limu Hu and M. Li, Material Forming Principle, China Machine Press, Beijing, 2005, p 20–56 (in Chinese)
18.
Zurück zum Zitat P. Lin, Z. He, S. Yuan et al., Tensile Deformation Behavior of Ti-22Al-25Nb Alloy at Elevated Temperatures, Mater. Sci. Eng., A, 2012, 556, p 617–624CrossRef P. Lin, Z. He, S. Yuan et al., Tensile Deformation Behavior of Ti-22Al-25Nb Alloy at Elevated Temperatures, Mater. Sci. Eng., A, 2012, 556, p 617–624CrossRef
19.
Zurück zum Zitat Z.L. Zhao, Y.Q. Ning, H.Z. Guo et al., Discontinuous Yielding in Ni-Base Superalloys During High-Speed Deformation, Mater. Sci. Eng., A, 2015, 620, p 383–389CrossRef Z.L. Zhao, Y.Q. Ning, H.Z. Guo et al., Discontinuous Yielding in Ni-Base Superalloys During High-Speed Deformation, Mater. Sci. Eng., A, 2015, 620, p 383–389CrossRef
20.
Zurück zum Zitat H. Liang, H. Guo, Y. Ning et al., Dynamic Recrystallization Behavior of Ti-5Al-5Mo-5V-1Cr-1Fe Alloy, Mater. Design., 2014, 63, p 798–804CrossRef H. Liang, H. Guo, Y. Ning et al., Dynamic Recrystallization Behavior of Ti-5Al-5Mo-5V-1Cr-1Fe Alloy, Mater. Design., 2014, 63, p 798–804CrossRef
21.
Zurück zum Zitat H. Liang, H. Guo, Y. Nan et al., The Construction of Constitutive Model and Identification of Dynamic Softening Mechanism of High-Temperature Deformation of Ti-5Al-5Mo-5V-1Cr-1Fe Alloy, Mater. Sci. Eng., A, 2014, 615, p 42–50CrossRef H. Liang, H. Guo, Y. Nan et al., The Construction of Constitutive Model and Identification of Dynamic Softening Mechanism of High-Temperature Deformation of Ti-5Al-5Mo-5V-1Cr-1Fe Alloy, Mater. Sci. Eng., A, 2014, 615, p 42–50CrossRef
22.
Zurück zum Zitat C.J. Boehlert, B.S. Majumdar, S. Krishnamurthy et al., Role of Matrix Microstructure on Room-Temperature Tensile Properties and Fiber-Strength Utilization of an Orthorhombic ti-Alloy-Based Composite, Metall. Mater. Trans. A, 1997, 28(2), p 309–323CrossRef C.J. Boehlert, B.S. Majumdar, S. Krishnamurthy et al., Role of Matrix Microstructure on Room-Temperature Tensile Properties and Fiber-Strength Utilization of an Orthorhombic ti-Alloy-Based Composite, Metall. Mater. Trans. A, 1997, 28(2), p 309–323CrossRef
23.
Zurück zum Zitat D. Banerjee, Deformation of the O-Phase and Alpha(2)-Phase in the Ti-Al-Nb System, Philos. Mag. A, 1995, 72(6), p 1559–1587CrossRef D. Banerjee, Deformation of the O-Phase and Alpha(2)-Phase in the Ti-Al-Nb System, Philos. Mag. A, 1995, 72(6), p 1559–1587CrossRef
24.
Zurück zum Zitat R. Ebrahimi and A. Najafizadeh, A New Method for Evaluation of Friction in Bulk Metal Forming, J. Mater. Process. Technol., 2004, 152(2), p 136–143CrossRef R. Ebrahimi and A. Najafizadeh, A New Method for Evaluation of Friction in Bulk Metal Forming, J. Mater. Process. Technol., 2004, 152(2), p 136–143CrossRef
25.
Zurück zum Zitat Z.J. Luo, Q. Yang, and J.I. Wan Hua, New Method to Establish Constitutive Relationship Considering Effect of Deformation Heating, Chin. J. Nonferrous Metals, 2000, 52, p 804–808 (in Chinese) Z.J. Luo, Q. Yang, and J.I. Wan Hua, New Method to Establish Constitutive Relationship Considering Effect of Deformation Heating, Chin. J. Nonferrous Metals, 2000, 52, p 804–808 (in Chinese)
26.
Zurück zum Zitat G. Yong, Steel Material Handbook, Chemical Industry Press, Beijing, 2009, p 802–804 G. Yong, Steel Material Handbook, Chemical Industry Press, Beijing, 2009, p 802–804
27.
Zurück zum Zitat H. Mecking and U.F. Kocks, Kinetics of Flow and Strain-Hardening, Acta Mater., 1981, 29(11), p 1865–1875CrossRef H. Mecking and U.F. Kocks, Kinetics of Flow and Strain-Hardening, Acta Mater., 1981, 29(11), p 1865–1875CrossRef
28.
Zurück zum Zitat A.M. Jorge, W. Regone, and O. Balancin, Effect of Competing Hardening and Softening Mechanisms on the Flow Stress Curve Modeling of Ultra-Low Carbon Steel at High Temperatures, J. Mater. Process. Technol., 2003, 142(2), p 415–421CrossRef A.M. Jorge, W. Regone, and O. Balancin, Effect of Competing Hardening and Softening Mechanisms on the Flow Stress Curve Modeling of Ultra-Low Carbon Steel at High Temperatures, J. Mater. Process. Technol., 2003, 142(2), p 415–421CrossRef
29.
Zurück zum Zitat A. Momeni, G.R. Ebrahimi, M. Jahazi et al., Microstructure Evolution at the Onset of Discontinuous Dynamic Recrystallization: A Physics-Based Model of Subgrain Critical Size, J. Alloys Compd., 2014, 587, p 199–210CrossRef A. Momeni, G.R. Ebrahimi, M. Jahazi et al., Microstructure Evolution at the Onset of Discontinuous Dynamic Recrystallization: A Physics-Based Model of Subgrain Critical Size, J. Alloys Compd., 2014, 587, p 199–210CrossRef
30.
Zurück zum Zitat S.V. Raj and G.M. Pharr, Creep Substructure Formation in Sodium-Chloride Single-Crystals in the Power Law and Exponential Creep Regimes, Mater. Sci. Eng., A, 1989, 122(2), p 233–242CrossRef S.V. Raj and G.M. Pharr, Creep Substructure Formation in Sodium-Chloride Single-Crystals in the Power Law and Exponential Creep Regimes, Mater. Sci. Eng., A, 1989, 122(2), p 233–242CrossRef
31.
Zurück zum Zitat H. Meeking and U.F. Kocks, Kinetics of Flow and Strain Hardening, Acta Mater., 1981, 29(11), p 1865–1875CrossRef H. Meeking and U.F. Kocks, Kinetics of Flow and Strain Hardening, Acta Mater., 1981, 29(11), p 1865–1875CrossRef
32.
Zurück zum Zitat J.L. Zhang, H.Z. Guo, and H.Q. Liang, Hot Deformation Behavior and Process Parameter Optimization of Ti22Al25Nb Using Processing Map, Rare Metals, 2015, 35, p 1–9 J.L. Zhang, H.Z. Guo, and H.Q. Liang, Hot Deformation Behavior and Process Parameter Optimization of Ti22Al25Nb Using Processing Map, Rare Metals, 2015, 35, p 1–9
33.
Zurück zum Zitat Y.Q. Ning, X. Luo, H.Q. Liang et al., Competition Between Dynamic Recovery and Recrystallization During Hot Deformation for TC18 Titanium Alloy, Mater. Sci. Eng., A, 2015, 635, p 77–85CrossRef Y.Q. Ning, X. Luo, H.Q. Liang et al., Competition Between Dynamic Recovery and Recrystallization During Hot Deformation for TC18 Titanium Alloy, Mater. Sci. Eng., A, 2015, 635, p 77–85CrossRef
Metadaten
Titel
Hot Deformation Mechanisms of Ti22Al25Nb Orthorhombic Alloy
verfasst von
Jingli Zhang
Jingping Wu
Yuanyuan Luo
Xiaonan Mao
Dizi Guo
Shengze Zhao
Fan Yang
Publikationsdatum
18.01.2019
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 2/2019
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-3858-4

Weitere Artikel der Ausgabe 2/2019

Journal of Materials Engineering and Performance 2/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.