Skip to main content
Erschienen in: Meccanica 7/2017

06.08.2016

How graphene flexes and stretches under concomitant bending couples and tractions

Erschienen in: Meccanica | Ausgabe 7/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We propose a geometrically and materially nonlinear discrete mechanical model of graphene that assigns an energetic cost to changes in bond lengths, bond angles, and dihedral angles. We formulate a variational equilibrium problem for a rectangular graphene sheet with assigned balanced forces and couples uniformly distributed over opposite side pairs. We show that the resulting combination of stretching and bending makes achiral graphene easier to bend and harder (easier) to stretch for small (large) traction loads. Our general developments hold for a wide class of REBO potentials; we illustrate them in detail by numerical calculations performed in the case of a widely used 2nd-generation Brenner potential.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
In this connection, we note that, reversing the force distribution shown in Fig. 1 does not necessarily induce hardening, because the problem nonlinearity demands for a recalculation of the solution with a priori unpredictable effetcs.
 
2
In fact, we repeat, our procedure is general enough to accommodate a variety of diehedral-angle sensitive REBO potentials; consequently, it can be adopted to find out whether an intermolecular potential in the class specified by (1920) does predict the peculiar behavior of graphene predicted in [38].
 
3
Couples and forces are uniformly distributed in a discrete sense.
 
4
The value of this parameter depends slightly on the intermolecular potential of one’s choice; for the 2nd-generation Brenner potential we use later on in our computations, \(r_0=0.14204\) nm.
 
5
Here we have taken relations (11)\(_{4,5}\) into account; later on, when we deal with zigzag bending, we shall use another specialization of (19) and (20).
 
6
For an example of such assumptions, which are fulfilled by the stored-energy functional we will use to obtain the representative results reported in Sect. 6, see [10].
 
Literatur
1.
Zurück zum Zitat Arroyo M, Belytschko T (2004) Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy–Born rule. Phys Rev B 69:115415ADSCrossRef Arroyo M, Belytschko T (2004) Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy–Born rule. Phys Rev B 69:115415ADSCrossRef
2.
Zurück zum Zitat Bajaj C, Favata A, Podio-Guidugli P (2013) On a nanoscopically-informed shell theory of carbon nanotubes. Europ J Mech A Solids 42:137–157ADSMathSciNetCrossRef Bajaj C, Favata A, Podio-Guidugli P (2013) On a nanoscopically-informed shell theory of carbon nanotubes. Europ J Mech A Solids 42:137–157ADSMathSciNetCrossRef
3.
Zurück zum Zitat Brenner DW (1990) Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B 42(15):9458ADSCrossRef Brenner DW (1990) Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B 42(15):9458ADSCrossRef
4.
Zurück zum Zitat Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB (2002) A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys Cond Matter 14(4):783ADSCrossRef Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB (2002) A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys Cond Matter 14(4):783ADSCrossRef
5.
Zurück zum Zitat Cadelano E, Palla PL, Giordano S, Colombo L (2009) Nonlinear elasticity of monolayer graphene. Phys Rev Lett 102:235502ADSCrossRef Cadelano E, Palla PL, Giordano S, Colombo L (2009) Nonlinear elasticity of monolayer graphene. Phys Rev Lett 102:235502ADSCrossRef
6.
Zurück zum Zitat Chang T, Geng J, Guo X (2005) Chirality- and size-dependent elastic properties of singlewalled carbon nanotubes. Appl Phys Lett 87:251929ADSCrossRef Chang T, Geng J, Guo X (2005) Chirality- and size-dependent elastic properties of singlewalled carbon nanotubes. Appl Phys Lett 87:251929ADSCrossRef
7.
Zurück zum Zitat Chang T, Geng J, Guo X (2006) Prediction of chirality- and size-dependent elastic properties of single-walled carbon nanotubes via a molecular mechanics model. Proc R Soc A 462:2523–2540ADSCrossRefMATH Chang T, Geng J, Guo X (2006) Prediction of chirality- and size-dependent elastic properties of single-walled carbon nanotubes via a molecular mechanics model. Proc R Soc A 462:2523–2540ADSCrossRefMATH
8.
Zurück zum Zitat Chang T (2010) A molecular based anisotropic shell model for single-walled carbon nanotubes. J Mech Phys Solids 58(9):1422–1433ADSMathSciNetCrossRef Chang T (2010) A molecular based anisotropic shell model for single-walled carbon nanotubes. J Mech Phys Solids 58(9):1422–1433ADSMathSciNetCrossRef
9.
Zurück zum Zitat Chang T, Gao H (2003) Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J Mech Phys Solids 51(6):1059–1074ADSCrossRefMATH Chang T, Gao H (2003) Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J Mech Phys Solids 51(6):1059–1074ADSCrossRefMATH
10.
Zurück zum Zitat Favata A, Micheletti A, Podio-Guidugli P, Pugno NM (2016) Geometry and self-stress of single-wall carbon nanotubes and graphene via a discrete model based on a 2nd-generation REBO potential. J Elast. doi:10.1007/s10659-015-9568-8 MathSciNetMATH Favata A, Micheletti A, Podio-Guidugli P, Pugno NM (2016) Geometry and self-stress of single-wall carbon nanotubes and graphene via a discrete model based on a 2nd-generation REBO potential. J Elast. doi:10.​1007/​s10659-015-9568-8 MathSciNetMATH
11.
Zurück zum Zitat Favata A, Micheletti A, Ryu S, Pugno NM (2016) An analytical benchmark and a Mathematica program for MD codes: testing LAMMPS on the 2nd generation Brenner potential. Comput Phys Commun. doi:10.1016/j.cpc.2016.06.005 Favata A, Micheletti A, Ryu S, Pugno NM (2016) An analytical benchmark and a Mathematica program for MD codes: testing LAMMPS on the 2nd generation Brenner potential. Comput Phys Commun. doi:10.​1016/​j.​cpc.​2016.​06.​005
12.
Zurück zum Zitat Favata A, Podio-Guidugli P (2014) A shell theory for chiral single-wall carbon nanotubes. Europ J Mech A Solids 45:198–210ADSMathSciNetCrossRef Favata A, Podio-Guidugli P (2014) A shell theory for chiral single-wall carbon nanotubes. Europ J Mech A Solids 45:198–210ADSMathSciNetCrossRef
13.
Zurück zum Zitat Favata A, Podio-Guidugli P (2015) A shell theory for carbon nanotube of arbitrary chirality. Adv Struct Mater 45:155–167MathSciNetCrossRef Favata A, Podio-Guidugli P (2015) A shell theory for carbon nanotube of arbitrary chirality. Adv Struct Mater 45:155–167MathSciNetCrossRef
14.
Zurück zum Zitat Geng J, Chang T (2006) Nonlinear stick-spiral model for predicting mechanical behavior of single-walled carbon nanotubes. Phys Rev B 74:245428ADSCrossRef Geng J, Chang T (2006) Nonlinear stick-spiral model for predicting mechanical behavior of single-walled carbon nanotubes. Phys Rev B 74:245428ADSCrossRef
15.
Zurück zum Zitat Georgantzinos SK, Giannopoulos GI, Anifantis NK (2010) Numerical investigation of elastic mechanical properties of graphene structures. Mater Design 31(10):4646–4654CrossRefMATH Georgantzinos SK, Giannopoulos GI, Anifantis NK (2010) Numerical investigation of elastic mechanical properties of graphene structures. Mater Design 31(10):4646–4654CrossRefMATH
16.
Zurück zum Zitat Georgantzinos SK, Giannopoulos GI, Katsareas DE, Kakavas PA, Anifantis NK (2011) Size-dependent non-linear mechanical properties of graphene nanoribbons. Comput Mater Sci 50(7):2057–2062CrossRef Georgantzinos SK, Giannopoulos GI, Katsareas DE, Kakavas PA, Anifantis NK (2011) Size-dependent non-linear mechanical properties of graphene nanoribbons. Comput Mater Sci 50(7):2057–2062CrossRef
17.
Zurück zum Zitat Giannopoulos GI, Liosatos IA, Moukanidis AK (2011) Parametric study of elastic mechanical properties of graphene nanoribbons by a new structural mechanics approach. Phys E 1:124–134CrossRef Giannopoulos GI, Liosatos IA, Moukanidis AK (2011) Parametric study of elastic mechanical properties of graphene nanoribbons by a new structural mechanics approach. Phys E 1:124–134CrossRef
18.
Zurück zum Zitat Giannopoulos GI (2012) Elastic buckling and flexural rigidity of graphene nanoribbons by using a unique translational spring element per interatomic interaction. Comput Mater Sci 1:388–395CrossRef Giannopoulos GI (2012) Elastic buckling and flexural rigidity of graphene nanoribbons by using a unique translational spring element per interatomic interaction. Comput Mater Sci 1:388–395CrossRef
19.
Zurück zum Zitat Guo X, Wang JB, Zhang HW (2006) Mechanical properties of single-walled carbon nanotubes based on higher order cauchyborn rule. Int J Solids Struct 43(5):1276–1290CrossRefMATH Guo X, Wang JB, Zhang HW (2006) Mechanical properties of single-walled carbon nanotubes based on higher order cauchyborn rule. Int J Solids Struct 43(5):1276–1290CrossRefMATH
20.
Zurück zum Zitat Huang Y, Wu J, Hwang KC (2006) Thickness of graphene and single-wall carbon nanotubes. Phys Rev B 74:245413ADSCrossRef Huang Y, Wu J, Hwang KC (2006) Thickness of graphene and single-wall carbon nanotubes. Phys Rev B 74:245413ADSCrossRef
21.
Zurück zum Zitat Jomehzadeh E, Afshar MK, Galiotis C, Shi X, Pugno NM (2013) Nonlinear softening and hardening nonlocal bending stiffness of an initially curved monolayer graphene. Int J Non-Linear Mech 56:123–131CrossRef Jomehzadeh E, Afshar MK, Galiotis C, Shi X, Pugno NM (2013) Nonlinear softening and hardening nonlocal bending stiffness of an initially curved monolayer graphene. Int J Non-Linear Mech 56:123–131CrossRef
22.
Zurück zum Zitat Kudin KN, Scuseria GE, Yakobson BI (2001) \(C_{2}{F}\), BN, and C nanoshell elasticity from ab initio computations. Phys Rev B 64:235406ADSCrossRef Kudin KN, Scuseria GE, Yakobson BI (2001) \(C_{2}{F}\), BN, and C nanoshell elasticity from ab initio computations. Phys Rev B 64:235406ADSCrossRef
23.
Zurück zum Zitat Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388ADSCrossRef Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388ADSCrossRef
24.
Zurück zum Zitat Lourie O, Wagner HD (1998) Evaluation of Young’s modulus of carbon nanotubes by micro-Raman spectroscopy. J Mater Res 13:2418–2422ADSCrossRef Lourie O, Wagner HD (1998) Evaluation of Young’s modulus of carbon nanotubes by micro-Raman spectroscopy. J Mater Res 13:2418–2422ADSCrossRef
25.
Zurück zum Zitat Lu JP (1997) Elastic properties of carbon nanotubes and nanoropes. Phys Rev Lett 79:1297–1300ADSCrossRef Lu JP (1997) Elastic properties of carbon nanotubes and nanoropes. Phys Rev Lett 79:1297–1300ADSCrossRef
26.
Zurück zum Zitat Lu Q, Arroyo M, Huang R (2009) Elastic bending modulus of monolayer graphene. J Phys D 42(10):102002ADSCrossRef Lu Q, Arroyo M, Huang R (2009) Elastic bending modulus of monolayer graphene. J Phys D 42(10):102002ADSCrossRef
27.
Zurück zum Zitat Lu Q, Huang R (2009) Nonlinear mechanics of single-atomic-layer graphene sheets. Int J Appl Mech 01(03):443–467CrossRef Lu Q, Huang R (2009) Nonlinear mechanics of single-atomic-layer graphene sheets. Int J Appl Mech 01(03):443–467CrossRef
28.
Zurück zum Zitat Meo M, Rossi M (2006) Prediction of Young’s modulus of single wall carbon nanotubes by molecular-mechanics based finite element modelling. Compos Sci Technol 66:1597–1605CrossRef Meo M, Rossi M (2006) Prediction of Young’s modulus of single wall carbon nanotubes by molecular-mechanics based finite element modelling. Compos Sci Technol 66:1597–1605CrossRef
29.
Zurück zum Zitat Odegard GM, Gates TS, Nicholson LM, Wise KE (2002) Equivalent-continuum modeling of nano-structured materials. Compos Sci Technol 62(14):1869–1880CrossRef Odegard GM, Gates TS, Nicholson LM, Wise KE (2002) Equivalent-continuum modeling of nano-structured materials. Compos Sci Technol 62(14):1869–1880CrossRef
30.
Zurück zum Zitat Sakhaee-Pour A (2009) Elastic properties of single-layered graphene sheet. Solid State Commun 149(12):91–95ADSCrossRef Sakhaee-Pour A (2009) Elastic properties of single-layered graphene sheet. Solid State Commun 149(12):91–95ADSCrossRef
31.
Zurück zum Zitat Sandeep S, Patel BP (2015) Nonlinear elastic properties of graphene sheet under finite deformation. Compos Struct 119:412–421CrossRef Sandeep S, Patel BP (2015) Nonlinear elastic properties of graphene sheet under finite deformation. Compos Struct 119:412–421CrossRef
32.
Zurück zum Zitat Scarpa F, Adhikari S, Srikantha Phani A (2009) Effective elastic mechanical properties of single layer graphene sheets. Nanotechnology 20(6):065709ADSCrossRef Scarpa F, Adhikari S, Srikantha Phani A (2009) Effective elastic mechanical properties of single layer graphene sheets. Nanotechnology 20(6):065709ADSCrossRef
33.
Zurück zum Zitat Scarpa F, Adhikari S, Gil AJ, Remillat C (2010) The bending of single layer graphene sheets: the lattice versus continuum approach. Nanotechnology 21(12):125702ADSCrossRef Scarpa F, Adhikari S, Gil AJ, Remillat C (2010) The bending of single layer graphene sheets: the lattice versus continuum approach. Nanotechnology 21(12):125702ADSCrossRef
34.
Zurück zum Zitat Sfyris D, Sfyris GI, Galiotis C (2014) Curvature dependent surface energy for free standing monolayer graphene: Geometrical and material linearization with closed form solutions. Int J Eng Sci 85:224–233CrossRef Sfyris D, Sfyris GI, Galiotis C (2014) Curvature dependent surface energy for free standing monolayer graphene: Geometrical and material linearization with closed form solutions. Int J Eng Sci 85:224–233CrossRef
35.
Zurück zum Zitat Sfyris D, Sfyris GI, Galiotis C (2014) Curvature dependent surface energy for a free standing monolayer graphene: some closed form solutions of the non-linear theory. Int J Nonliner Mech 67:186CrossRef Sfyris D, Sfyris GI, Galiotis C (2014) Curvature dependent surface energy for a free standing monolayer graphene: some closed form solutions of the non-linear theory. Int J Nonliner Mech 67:186CrossRef
37.
Zurück zum Zitat Shen L, Li J (2004) Transversely isotropic elastic properties of single-walled carbon nanotubes. Phys Rev B 69:045414ADSCrossRef Shen L, Li J (2004) Transversely isotropic elastic properties of single-walled carbon nanotubes. Phys Rev B 69:045414ADSCrossRef
38.
Zurück zum Zitat Shi X, Peng B, Pugno NM, Gao H (2012) Stretch-induced softening of bending rigidity in graphene. Appl Phys Lett 100:191913ADSCrossRef Shi X, Peng B, Pugno NM, Gao H (2012) Stretch-induced softening of bending rigidity in graphene. Appl Phys Lett 100:191913ADSCrossRef
39.
Zurück zum Zitat Singh S, Patel BP (2015) Atomistic-continuum coupled model for nonlinear analysis of single layer graphene sheets. Int J Non-Linear Mech 76:112–119CrossRef Singh S, Patel BP (2015) Atomistic-continuum coupled model for nonlinear analysis of single layer graphene sheets. Int J Non-Linear Mech 76:112–119CrossRef
40.
Zurück zum Zitat Tersoff J (1988) New empirical approach for the structure and energy of covalent systems. Phys Rev B 37:6991ADSCrossRef Tersoff J (1988) New empirical approach for the structure and energy of covalent systems. Phys Rev B 37:6991ADSCrossRef
41.
Zurück zum Zitat Tersoff J (1989) Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B 39:5566ADSCrossRef Tersoff J (1989) Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B 39:5566ADSCrossRef
42.
Zurück zum Zitat Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381(6584):678–680ADSCrossRef Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381(6584):678–680ADSCrossRef
43.
Zurück zum Zitat Tu Z, Ou-Yang Z (2002) Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective young’s moduli dependent on layer number. Phys Rev B 65:233407ADSCrossRef Tu Z, Ou-Yang Z (2002) Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective young’s moduli dependent on layer number. Phys Rev B 65:233407ADSCrossRef
44.
Zurück zum Zitat Wang Q (2004) Effective in-plane stiffness and bending rigidity of armchair and zigzag carbon nanotubes. Int J Solids Struct 42:5451–5461CrossRefMATH Wang Q (2004) Effective in-plane stiffness and bending rigidity of armchair and zigzag carbon nanotubes. Int J Solids Struct 42:5451–5461CrossRefMATH
45.
Zurück zum Zitat Wang JB, Guo X, Zhang HW, Wang L, Liao JB (2006) Energy and mechanical properties of single-walled carbon nanotubes predicted using the higher order Cauchy–Born rule. Phys Rev B 73:115428ADSCrossRef Wang JB, Guo X, Zhang HW, Wang L, Liao JB (2006) Energy and mechanical properties of single-walled carbon nanotubes predicted using the higher order Cauchy–Born rule. Phys Rev B 73:115428ADSCrossRef
46.
Zurück zum Zitat Wei X, Fragneaud B, Marianetti CA, Kysar JW (2009) Nonlinear elastic behavior of graphene: Ab initio calculations to continuum description. Phys Rev B 80:205407ADSCrossRef Wei X, Fragneaud B, Marianetti CA, Kysar JW (2009) Nonlinear elastic behavior of graphene: Ab initio calculations to continuum description. Phys Rev B 80:205407ADSCrossRef
47.
Zurück zum Zitat Wei Y, Wang B, Wu J, Yang R, Dunn ML (2013) Bending rigidity and Gaussian bending stiffness of single-layered graphene. Nano Lett 13:26ADSCrossRef Wei Y, Wang B, Wu J, Yang R, Dunn ML (2013) Bending rigidity and Gaussian bending stiffness of single-layered graphene. Nano Lett 13:26ADSCrossRef
48.
Zurück zum Zitat Xiao J, Gama B, Gillespie J Jr (2005) An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes. Int J Solids Struct 42:3075–3092CrossRefMATH Xiao J, Gama B, Gillespie J Jr (2005) An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes. Int J Solids Struct 42:3075–3092CrossRefMATH
49.
Zurück zum Zitat Yakobson BI, Brabec CJ, Bernholc J (1996) Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett 76:2511–2514ADSCrossRef Yakobson BI, Brabec CJ, Bernholc J (1996) Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett 76:2511–2514ADSCrossRef
50.
Zurück zum Zitat Zhang P, Huang Y, Geubelle PH, Klein PA, Hwang KC (2002) The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials. Int J Solids Struct 39(1314):3893–3906CrossRefMATH Zhang P, Huang Y, Geubelle PH, Klein PA, Hwang KC (2002) The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials. Int J Solids Struct 39(1314):3893–3906CrossRefMATH
51.
Zurück zum Zitat Zhou J, Huang R (2008) Internal lattice relaxation of single-layer graphene under in-plane deformation. J Mech Phys Solids 56(4):1609–1623ADSCrossRefMATH Zhou J, Huang R (2008) Internal lattice relaxation of single-layer graphene under in-plane deformation. J Mech Phys Solids 56(4):1609–1623ADSCrossRefMATH
Metadaten
Titel
How graphene flexes and stretches under concomitant bending couples and tractions
Publikationsdatum
06.08.2016
Erschienen in
Meccanica / Ausgabe 7/2017
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-016-0503-2

Weitere Artikel der Ausgabe 7/2017

Meccanica 7/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.