Skip to main content
Erschienen in:

17.10.2023

How Much Can One Learn a Partial Differential Equation from Its Solution?

verfasst von: Yuchen He, Hongkai Zhao, Yimin Zhong

Erschienen in: Foundations of Computational Mathematics | Ausgabe 5/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, we study the problem of learning a partial differential equation (PDE) from its solution data. PDEs of various types are used to illustrate how much the solution data can reveal the PDE operator depending on the underlying operator and initial data. A data-driven and data-adaptive approach based on local regression and global consistency is proposed for stable PDE identification. Numerical experiments are provided to verify our analysis and demonstrate the performance of the proposed algorithms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat S. Agmon. On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems. Communications on Pure and Applied Mathematics, 15(2):119–147, 1962.MathSciNetCrossRef S. Agmon. On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems. Communications on Pure and Applied Mathematics, 15(2):119–147, 1962.MathSciNetCrossRef
2.
Zurück zum Zitat S. Agmon. Lectures on elliptic boundary value problems, volume 369. American Mathematical Soc., 2010. S. Agmon. Lectures on elliptic boundary value problems, volume 369. American Mathematical Soc., 2010.
3.
Zurück zum Zitat E. Akutowicz. The ergodic property of the characteristics on a torus. The Quarterly Journal of Mathematics, 9(1):275–281, 1958.MathSciNetCrossRef E. Akutowicz. The ergodic property of the characteristics on a torus. The Quarterly Journal of Mathematics, 9(1):275–281, 1958.MathSciNetCrossRef
4.
Zurück zum Zitat H. Y. Benjamini Y. Controlling the false discovery rate: a practical and powerful approach to multiple hypothesis testing. R Stat Soc B, 57:289-300, 1995.CrossRef H. Y. Benjamini Y. Controlling the false discovery rate: a practical and powerful approach to multiple hypothesis testing. R Stat Soc B, 57:289-300, 1995.CrossRef
5.
Zurück zum Zitat D. Beran and F. Hall Jr. Remote sensing for air pollution meteorology. Bulletin of the American Meteorological Society, 55(9):1097–1106, 1974.CrossRef D. Beran and F. Hall Jr. Remote sensing for air pollution meteorology. Bulletin of the American Meteorological Society, 55(9):1097–1106, 1974.CrossRef
6.
Zurück zum Zitat R. Bhatia. Matrix analysis, volume 169. Springer Science & Business Media, 2013. R. Bhatia. Matrix analysis, volume 169. Springer Science & Business Media, 2013.
7.
Zurück zum Zitat J. Bongard and H. Lipson. Automated reverse engineering of nonlinear dynamical systems. Proceedings of the National Academy of Sciences, 104(24):9943–9948, 2007.CrossRef J. Bongard and H. Lipson. Automated reverse engineering of nonlinear dynamical systems. Proceedings of the National Academy of Sciences, 104(24):9943–9948, 2007.CrossRef
8.
Zurück zum Zitat F. E. Browder. On the eigenfunctions and eigenvalues of the general linear elliptic differential operator. Proceedings of the National Academy of Sciences of the United States of America, 39(5):433, 1953.MathSciNetCrossRef F. E. Browder. On the eigenfunctions and eigenvalues of the general linear elliptic differential operator. Proceedings of the National Academy of Sciences of the United States of America, 39(5):433, 1953.MathSciNetCrossRef
9.
Zurück zum Zitat W. Dai and O. Milenkovic. Subspace pursuit for compressive sensing signal reconstruction. IEEE transactions on Information Theory, 55(5):2230–2249, 2009.MathSciNetCrossRef W. Dai and O. Milenkovic. Subspace pursuit for compressive sensing signal reconstruction. IEEE transactions on Information Theory, 55(5):2230–2249, 2009.MathSciNetCrossRef
10.
Zurück zum Zitat J. Douglas and B. Edwards. Recent and future developments in earthquake ground motion estimation. Earth-Science Reviews, 160:203–219, 2016.CrossRef J. Douglas and B. Edwards. Recent and future developments in earthquake ground motion estimation. Earth-Science Reviews, 160:203–219, 2016.CrossRef
11.
Zurück zum Zitat U. Fasel, J. N. Kutz, B. W. Brunton, and S. L. Brunton. Ensemble-sindy: Robust sparse model discovery in the low-data, high-noise limit, with active learning and control. arXiv preprintarXiv:2111.10992, 2021. U. Fasel, J. N. Kutz, B. W. Brunton, and S. L. Brunton. Ensemble-sindy: Robust sparse model discovery in the low-data, high-noise limit, with active learning and control. arXiv preprintarXiv:​2111.​10992, 2021.
12.
Zurück zum Zitat A. Fick. Ueber diffusion. Annalen der Physik, 170(1):59–86, 1855.CrossRef A. Fick. Ueber diffusion. Annalen der Physik, 170(1):59–86, 1855.CrossRef
13.
Zurück zum Zitat L. Gårding. On the asymptotic distribution of the eigenvalues and eigenfunctions of elliptic differential operators. Mathematica Scandinavica, pages 237–255, 1953. L. Gårding. On the asymptotic distribution of the eigenvalues and eigenfunctions of elliptic differential operators. Mathematica Scandinavica, pages 237–255, 1953.
14.
Zurück zum Zitat I. Gavrilyuk, W. Hackbusch, and B. Khoromskij. Data-sparse approximation to the operator-valued functions of elliptic operator. Mathematics of computation, 73(247):1297–1324, 2004.MathSciNetCrossRef I. Gavrilyuk, W. Hackbusch, and B. Khoromskij. Data-sparse approximation to the operator-valued functions of elliptic operator. Mathematics of computation, 73(247):1297–1324, 2004.MathSciNetCrossRef
15.
Zurück zum Zitat I. P. Gavrilyuk, W. Hackbusch, and B. N. Khoromskij. \(\cal{H}\)-matrix approximation for the operator exponential with applications. Numerische Mathematik, 92(1):83–111, 2002.MathSciNetCrossRef I. P. Gavrilyuk, W. Hackbusch, and B. N. Khoromskij. \(\cal{H}\)-matrix approximation for the operator exponential with applications. Numerische Mathematik, 92(1):83–111, 2002.MathSciNetCrossRef
16.
Zurück zum Zitat A. Hasler, K. Palaniappan, C. Kambhammetu, P. Black, E. Uhlhorn, and D. Chesters. High-resolution wind fields within the inner core and eye of a mature tropical cyclone from goes 1-min images. Bulletin of the American Meteorological Society, 79(11):2483–2496, 1998.CrossRef A. Hasler, K. Palaniappan, C. Kambhammetu, P. Black, E. Uhlhorn, and D. Chesters. High-resolution wind fields within the inner core and eye of a mature tropical cyclone from goes 1-min images. Bulletin of the American Meteorological Society, 79(11):2483–2496, 1998.CrossRef
17.
Zurück zum Zitat Y. He, S.-H. Kang, W. Liao, H. Liu, and Y. Liu. Robust identification of differential equations by numerical techniques from a single set of noisy observation. SIAM Journal on Scientific Computing, 44(3):A1145–A1175, 2022.MathSciNetCrossRef Y. He, S.-H. Kang, W. Liao, H. Liu, and Y. Liu. Robust identification of differential equations by numerical techniques from a single set of noisy observation. SIAM Journal on Scientific Computing, 44(3):A1145–A1175, 2022.MathSciNetCrossRef
18.
Zurück zum Zitat Y. He, S.-H. Kang, W. Liao, H. Liu, and Y. Liu. Group projected subspace pursuit for identification of variable coefficient differential equations (GP-IDENT). arXiv preprintarXiv:2304.05543, 2023. Y. He, S.-H. Kang, W. Liao, H. Liu, and Y. Liu. Group projected subspace pursuit for identification of variable coefficient differential equations (GP-IDENT). arXiv preprintarXiv:​2304.​05543, 2023.
19.
Zurück zum Zitat Y. He, N. Suh, X. Huo, S. H. Kang, and Y. Mei. Asymptotic theory of-regularized pde identification from a single noisy trajectory. SIAM/ASA Journal on Uncertainty Quantification, 10(3):1012–1036, 2022.MathSciNetCrossRef Y. He, N. Suh, X. Huo, S. H. Kang, and Y. Mei. Asymptotic theory of-regularized pde identification from a single noisy trajectory. SIAM/ASA Journal on Uncertainty Quantification, 10(3):1012–1036, 2022.MathSciNetCrossRef
20.
Zurück zum Zitat P. Jaccard. The distribution of the flora in the alpine zone. New phytologist, 11(2):37–50, 1912.CrossRef P. Jaccard. The distribution of the flora in the alpine zone. New phytologist, 11(2):37–50, 1912.CrossRef
21.
Zurück zum Zitat S. Jiang, L. Greengard, and S. Wang. Efficient sum-of-exponentials approximations for the heat kernel and their applications. Advances in Computational Mathematics, 41(3):529–551, 2015.MathSciNetCrossRef S. Jiang, L. Greengard, and S. Wang. Efficient sum-of-exponentials approximations for the heat kernel and their applications. Advances in Computational Mathematics, 41(3):529–551, 2015.MathSciNetCrossRef
22.
Zurück zum Zitat K. Kaheman, J. N. Kutz, and S. L. Brunton. Sindy-pi: a robust algorithm for parallel implicit sparse identification of nonlinear dynamics. Proceedings of the Royal Society A, 476(2242):20200279, 2020.MathSciNetCrossRef K. Kaheman, J. N. Kutz, and S. L. Brunton. Sindy-pi: a robust algorithm for parallel implicit sparse identification of nonlinear dynamics. Proceedings of the Royal Society A, 476(2242):20200279, 2020.MathSciNetCrossRef
23.
Zurück zum Zitat S. H. Kang, W. Liao, and Y. Liu. Ident: Identifying differential equations with numerical time evolution. Journal of Scientific Computing, 87(1):1–27, 2021.MathSciNetCrossRef S. H. Kang, W. Liao, and Y. Liu. Ident: Identifying differential equations with numerical time evolution. Journal of Scientific Computing, 87(1):1–27, 2021.MathSciNetCrossRef
24.
Zurück zum Zitat A. Kolmogoroff. Uber die beste annaherung von funktionen einer gegebenen funktionenklasse. Annals of Mathematics, pages 107–110, 1936. A. Kolmogoroff. Uber die beste annaherung von funktionen einer gegebenen funktionenklasse. Annals of Mathematics, pages 107–110, 1936.
25.
Zurück zum Zitat V. V. Kozlov. Dynamical systems with multivalued integrals on a torus. Proceedings of the Steklov Institute of Mathematics, 256(1):188–205, 2007.MathSciNetCrossRef V. V. Kozlov. Dynamical systems with multivalued integrals on a torus. Proceedings of the Steklov Institute of Mathematics, 256(1):188–205, 2007.MathSciNetCrossRef
26.
Zurück zum Zitat Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandkumar. Fourier neural operator for parametric partial differential equations. arXiv preprintarXiv:2010.08895, 2020. Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandkumar. Fourier neural operator for parametric partial differential equations. arXiv preprintarXiv:​2010.​08895, 2020.
27.
Zurück zum Zitat Z. Long, Y. Lu, and B. Dong. Pde-net 2.0: Learning pdes from data with a numeric-symbolic hybrid deep network. Journal of Computational Physics, 399:108925, 2019.MathSciNetCrossRef Z. Long, Y. Lu, and B. Dong. Pde-net 2.0: Learning pdes from data with a numeric-symbolic hybrid deep network. Journal of Computational Physics, 399:108925, 2019.MathSciNetCrossRef
28.
Zurück zum Zitat Z. Long, Y. Lu, X. Ma, and B. Dong. Pde-net: Learning pdes from data. In International Conference on Machine Learning, pages 3208–3216. PMLR, 2018. Z. Long, Y. Lu, X. Ma, and B. Dong. Pde-net: Learning pdes from data. In International Conference on Machine Learning, pages 3208–3216. PMLR, 2018.
29.
Zurück zum Zitat M. López-Fernández, C. Palencia, and A. Schädle. A spectral order method for inverting sectorial laplace transforms. SIAM journal on numerical analysis, 44(3):1332–1350, 2006.MathSciNetCrossRef M. López-Fernández, C. Palencia, and A. Schädle. A spectral order method for inverting sectorial laplace transforms. SIAM journal on numerical analysis, 44(3):1332–1350, 2006.MathSciNetCrossRef
30.
Zurück zum Zitat J. B. Marion. Classical dynamics of particles and systems. Academic Press, UK 2013. J. B. Marion. Classical dynamics of particles and systems. Academic Press, UK 2013.
31.
Zurück zum Zitat D. A. Messenger and D. M. Bortz. Weak sindy for partial differential equations. Journal of Computational Physics, page 110525, 2021. D. A. Messenger and D. M. Bortz. Weak sindy for partial differential equations. Journal of Computational Physics, page 110525, 2021.
32.
Zurück zum Zitat A. Pazy. Semigroups of linear operators and applications to partial differential equations, volume 44. Springer Science & Business Media, 2012. A. Pazy. Semigroups of linear operators and applications to partial differential equations, volume 44. Springer Science & Business Media, 2012.
33.
Zurück zum Zitat P. Phillipson and P. Schuster. Modeling by Nonlinear Differential Equations: Dissipative and Conservative Processes, volume 69. World Scientific, 2009. P. Phillipson and P. Schuster. Modeling by Nonlinear Differential Equations: Dissipative and Conservative Processes, volume 69. World Scientific, 2009.
34.
Zurück zum Zitat M. Raissi and G. E. Karniadakis. Hidden physics models: Machine learning of nonlinear partial differential equations. Journal of Computational Physics, 357:125–141, 2018.MathSciNetCrossRef M. Raissi and G. E. Karniadakis. Hidden physics models: Machine learning of nonlinear partial differential equations. Journal of Computational Physics, 357:125–141, 2018.MathSciNetCrossRef
35.
Zurück zum Zitat J. Reade. Eigenvalues of positive definite kernels. SIAM Journal on Mathematical Analysis, 14(1):152–157, 1983.MathSciNetCrossRef J. Reade. Eigenvalues of positive definite kernels. SIAM Journal on Mathematical Analysis, 14(1):152–157, 1983.MathSciNetCrossRef
36.
Zurück zum Zitat J. Reade. Eigenvalues of positive definite kernels ii. SIAM Journal on Mathematical Analysis, 15(1):137–142, 1984.MathSciNetCrossRef J. Reade. Eigenvalues of positive definite kernels ii. SIAM Journal on Mathematical Analysis, 15(1):137–142, 1984.MathSciNetCrossRef
37.
Zurück zum Zitat W. Rudin. Functional analysis 2nd ed. International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York, 1991. W. Rudin. Functional analysis 2nd ed. International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York, 1991.
38.
Zurück zum Zitat S. Rudy, A. Alla, S. L. Brunton, and J. N. Kutz. Data-driven identification of parametric partial differential equations. SIAM Journal on Applied Dynamical Systems, 18(2):643–660, 2019.MathSciNetCrossRef S. Rudy, A. Alla, S. L. Brunton, and J. N. Kutz. Data-driven identification of parametric partial differential equations. SIAM Journal on Applied Dynamical Systems, 18(2):643–660, 2019.MathSciNetCrossRef
39.
Zurück zum Zitat S. H. Rudy, S. L. Brunton, J. L. Proctor, and J. N. Kutz. Data-driven discovery of partial differential equations. Science Advances, 3(4):e1602614, 2017.CrossRef S. H. Rudy, S. L. Brunton, J. L. Proctor, and J. N. Kutz. Data-driven discovery of partial differential equations. Science Advances, 3(4):e1602614, 2017.CrossRef
40.
Zurück zum Zitat T. Saito. On the measure-preserving flow on the torus. Journal of the Mathematical Society of Japan, 3(2):279–284, 1951.MathSciNetCrossRef T. Saito. On the measure-preserving flow on the torus. Journal of the Mathematical Society of Japan, 3(2):279–284, 1951.MathSciNetCrossRef
41.
Zurück zum Zitat T. Saito. On dynamical systems in n-dimensional torus. Funkcial. Ekvac., 7:91–102, 1965.MathSciNet T. Saito. On dynamical systems in n-dimensional torus. Funkcial. Ekvac., 7:91–102, 1965.MathSciNet
42.
Zurück zum Zitat H. Schaeffer. Learning partial differential equations via data discovery and sparse optimization. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473(2197):20160446, 2017.MathSciNetCrossRef H. Schaeffer. Learning partial differential equations via data discovery and sparse optimization. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473(2197):20160446, 2017.MathSciNetCrossRef
43.
Zurück zum Zitat H. Schaeffer, R. Caflisch, C. D. Hauck, and S. Osher. Sparse dynamics for partial differential equations. Proceedings of the National Academy of Sciences, 110(17):6634–6639, 2013.MathSciNetCrossRef H. Schaeffer, R. Caflisch, C. D. Hauck, and S. Osher. Sparse dynamics for partial differential equations. Proceedings of the National Academy of Sciences, 110(17):6634–6639, 2013.MathSciNetCrossRef
44.
Zurück zum Zitat M. Schmidt and H. Lipson. Distilling free-form natural laws from experimental data. science, 324(5923):81–85, 2009.CrossRef M. Schmidt and H. Lipson. Distilling free-form natural laws from experimental data. science, 324(5923):81–85, 2009.CrossRef
45.
Zurück zum Zitat J. P. Shaffer. Multiple hypothesis testing. Ann. Rev. Psych., 46:561–584, 1995.CrossRef J. P. Shaffer. Multiple hypothesis testing. Ann. Rev. Psych., 46:561–584, 1995.CrossRef
46.
Zurück zum Zitat D. E. Shea, S. L. Brunton, and J. N. Kutz. Sindy-bvp: Sparse identification of nonlinear dynamics for boundary value problems. Physical Review Research, 3(2):023255, 2021.CrossRef D. E. Shea, S. L. Brunton, and J. N. Kutz. Sindy-bvp: Sparse identification of nonlinear dynamics for boundary value problems. Physical Review Research, 3(2):023255, 2021.CrossRef
47.
Zurück zum Zitat S. Sternberg. On differential equations on the torus. American Journal of Mathematics, 79(2):397–402, 1957.MathSciNetCrossRef S. Sternberg. On differential equations on the torus. American Journal of Mathematics, 79(2):397–402, 1957.MathSciNetCrossRef
48.
Zurück zum Zitat K. Wu and D. Xiu. Data-driven deep learning of partial differential equations in modal space. Journal of Computational Physics, 408, 2020. K. Wu and D. Xiu. Data-driven deep learning of partial differential equations in modal space. Journal of Computational Physics, 408, 2020.
49.
Zurück zum Zitat H. Xu, H. Chang, and D. Zhang. Dl-pde: Deep-learning based data-driven discovery of partial differential equations from discrete and noisy data. arXiv preprintarXiv:1908.04463, 2019. H. Xu, H. Chang, and D. Zhang. Dl-pde: Deep-learning based data-driven discovery of partial differential equations from discrete and noisy data. arXiv preprintarXiv:​1908.​04463, 2019.
50.
Zurück zum Zitat K. Xu and E. Darve. Physics constrained learning for data-driven inverse modeling from sparse observations. Journal of Computational Physics, page 110938, 2022. K. Xu and E. Darve. Physics constrained learning for data-driven inverse modeling from sparse observations. Journal of Computational Physics, page 110938, 2022.
Metadaten
Titel
How Much Can One Learn a Partial Differential Equation from Its Solution?
verfasst von
Yuchen He
Hongkai Zhao
Yimin Zhong
Publikationsdatum
17.10.2023
Verlag
Springer US
Erschienen in
Foundations of Computational Mathematics / Ausgabe 5/2024
Print ISSN: 1615-3375
Elektronische ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-023-09620-z