Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Wireless Personal Communications 3/2021

24.11.2020

How User Engagement Metrics Ameliorate the Web QoE?

verfasst von: Nawres Abdelwahed, Asma Ben Letaifa, Sadok El Asmi

Erschienen in: Wireless Personal Communications | Ausgabe 3/2021

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

User engagement in general is an interpretation of an individual’s reaction to an offer (a service, a product, an application). We can determine a person’s degree of commitment directly by interacting with him or by observing his behavior. To measure the user engagement some actions can be interpreted such as clicks on links, comments and download of documents. In an other hand, we can measure the user satisfaction towards a web page using web QoE metrics such as Time to First Byte (TTFB), onLoad (Load Time) and Above the Fold (ATF). These metrics are commenly used to predict web QoE using Machine Learning (ML) algorithms. By comparing the two groups of metrics (user engagement and web QoE) we conclude that user engagaement metrics are closer to user desires, that’s why in our work we focus on user engagement to predict user’s satisfaction by predicting the Mean Opinion Score (MOS). Existing works dont use user engagement metrics in datasets to predict MOS, that’s why in this paper, we propose to focus on user engagement to predict our MOS. To do so, we use the help of an existing dataset whose parameters are web QoE metrics. At first, we select metrics that have a direct relation with user enagement. Then, we refine their coefficients to obtain the best combination that gives a MOS very close to the real one (expressed directly by users). After that, we add a new column to the existing dataset that containes the new obtained engagement parameter. Finally, we apply different ML algorithms on our new dataset to predict the MOS and we conclude that decision tree is the best in our case.
Literatur
2.
Zurück zum Zitat Butkiewicz, M., & Madhyastha, H. V., et al. (2014). Characterizing web page complexity and its impact. In IEEE/ACM Transactions on Networking (pp. 943–956). Butkiewicz, M., & Madhyastha, H. V., et al. (2014). Characterizing web page complexity and its impact. In IEEE/ACM Transactions on Networking (pp. 943–956).
3.
Zurück zum Zitat Belshe, M, et al. (2015). Hypertext transfer protocol version 2 (http/2). In Internet Engineering Task Force. Belshe, M, et al. (2015). Hypertext transfer protocol version 2 (http/2). In Internet Engineering Task Force.
4.
Zurück zum Zitat Wang, X. S., & Balasubramanian, A., et al. (2014). How speedy is spdy? In 11th USENIX Symposium on Networked Systems Design and Implementation. Wang, X. S., & Balasubramanian, A., et al. (2014). How speedy is spdy? In 11th USENIX Symposium on Networked Systems Design and Implementation.
5.
Zurück zum Zitat Wang, X. S., & Krishnamurthy, A., et al. (2016). Speeding up web page loads with shandian. In USENIX NSDI. Wang, X. S., & Krishnamurthy, A., et al. (2016). Speeding up web page loads with shandian. In USENIX NSDI.
6.
Zurück zum Zitat Bocchi, E., & De Cicco, L., et al. (2016b). Measuring the quality of experience of web users. In ACM SIGCOMM CCR. Bocchi, E., & De Cicco, L., et al. (2016b). Measuring the quality of experience of web users. In ACM SIGCOMM CCR.
7.
Zurück zum Zitat Gao, Q., & Dey, P., et al. (2017a). Perceived performance of top retail webpages in the wild: Insights from large-scale crowdsourcing of above-the-fold qoe. In ACM Internet-QoE Workshop. Gao, Q., & Dey, P., et al. (2017a). Perceived performance of top retail webpages in the wild: Insights from large-scale crowdsourcing of above-the-fold qoe. In ACM Internet-QoE Workshop.
8.
Zurück zum Zitat Kelton, C., & Ryoo, J., et al. (2017). Improving user perceived page load time using gaze. In USENIX NSDI. Kelton, C., & Ryoo, J., et al. (2017). Improving user perceived page load time using gaze. In USENIX NSDI.
9.
Zurück zum Zitat Varvello, M., & Blackburn, J., et al. (2016). Eyeorg: A platform for crowdsourcing web quality of experience measurements. In ACM CoNEXT. Varvello, M., & Blackburn, J., et al. (2016). Eyeorg: A platform for crowdsourcing web quality of experience measurements. In ACM CoNEXT.
10.
Zurück zum Zitat Brutlag, J., & Abrams, Z., et al. (2011). Above the fold time: Measuring web page performance visually. In Web Performance and Operations. Brutlag, J., & Abrams, Z., et al. (2011). Above the fold time: Measuring web page performance visually. In Web Performance and Operations.
11.
Zurück zum Zitat Quesenbery,W., & Whitney Interactive Design. (2003). Dimensions of usability: Defining the conversation, driving the process. In UPA (pp. 387–399). Quesenbery,W., & Whitney Interactive Design. (2003). Dimensions of usability: Defining the conversation, driving the process. In UPA (pp. 387–399).
12.
Zurück zum Zitat Bocchi, E., De Luca, C., & Rossi, D. (2016). Measuring the quality of experience of web users. In ACM SIGCOMM Computer Communication Review (pp. 8–13). Bocchi, E., De Luca, C., & Rossi, D. (2016). Measuring the quality of experience of web users. In ACM SIGCOMM Computer Communication Review (pp. 8–13).
13.
Zurück zum Zitat Varvello, M., Blackburn, J., Naylor, D., & Papagiannaki, K. (2016). Eyeorg: A platform for crowdsourcing web quality of experience measurements. In ACM SIGCOMM Computer Communication Review (pp. 399–412). Varvello, M., Blackburn, J., Naylor, D., & Papagiannaki, K. (2016). Eyeorg: A platform for crowdsourcing web quality of experience measurements. In ACM SIGCOMM Computer Communication Review (pp. 399–412).
15.
Zurück zum Zitat Varela, M., Skorin-Kapov, L., Maki, T., & Hossfeld, T. (2015). Qoe in the web: A dance of design and performance. In IEEE QoMEX (pp. 1–7). Varela, M., Skorin-Kapov, L., Maki, T., & Hossfeld, T. (2015). Qoe in the web: A dance of design and performance. In IEEE QoMEX (pp. 1–7).
16.
Zurück zum Zitat Hobfeld, T., et al. (2011). The memory effect and its implications on web qoe modeling. In IEEE ITC (pp. 103–110). Hobfeld, T., et al. (2011). The memory effect and its implications on web qoe modeling. In IEEE ITC (pp. 103–110).
17.
Zurück zum Zitat Egger, S., Reichl, P., Hoßfeld, T., & Schatz, R. (2012). "Time is bandwidth”? narrowing the gap between subjective time perception and quality of experience. In IEEE ICC (pp. 1325–1330). Egger, S., Reichl, P., Hoßfeld, T., & Schatz, R. (2012). "Time is bandwidth”? narrowing the gap between subjective time perception and quality of experience. In IEEE ICC (pp. 1325–1330).
18.
Zurück zum Zitat Strohmeier, D., Mikkola, M., & Alexander, R. (2013). The importance of task completion times for modeling web-qoe of consecutive web page requests. In IEEE QoMEX (pp. 38–39). Strohmeier, D., Mikkola, M., & Alexander, R. (2013). The importance of task completion times for modeling web-qoe of consecutive web page requests. In IEEE QoMEX (pp. 38–39).
19.
Zurück zum Zitat Andreas, S., et al. (2015). Quantifying the impact of network bandwidth fluctuations and outages on web qoe. In IEEE QoMEX (pp. 1–6). Andreas, S., et al. (2015). Quantifying the impact of network bandwidth fluctuations and outages on web qoe. In IEEE QoMEX (pp. 1–6).
20.
Zurück zum Zitat Bocchi, E., Cicco, L. D., & Dario, R. (2016a). Measuring the quality of experience of web users. In Internet QoE Workshop (pp. 37–42). Bocchi, E., Cicco, L. D., & Dario, R. (2016a). Measuring the quality of experience of web users. In Internet QoE Workshop (pp. 37–42).
21.
Zurück zum Zitat Alemnew, S. A., et al. (2019). Measuring web latency and rendering performance: Method, tools, and longitudinal dataset. IEEE Trasactions on Network and Service Management, 16, 535–549. CrossRef Alemnew, S. A., et al. (2019). Measuring web latency and rendering performance: Method, tools, and longitudinal dataset. IEEE Trasactions on Network and Service Management, 16, 535–549. CrossRef
22.
Zurück zum Zitat Song, E., Pan, T., Qiang, F., et al. (2020). Threshold-oblivious on-line web qoe assessment using neural network-based regression model. IET Communications, 14, 2018–2026. CrossRef Song, E., Pan, T., Qiang, F., et al. (2020). Threshold-oblivious on-line web qoe assessment using neural network-based regression model. IET Communications, 14, 2018–2026. CrossRef
23.
Zurück zum Zitat Jahromi, H. Z., Delaney, T. D., & Hines, A. (2020). Beyond first impressions: Estimating quality of experience for interactive web applications. IEEE Access, 8, 47741–47755. CrossRef Jahromi, H. Z., Delaney, T. D., & Hines, A. (2020). Beyond first impressions: Estimating quality of experience for interactive web applications. IEEE Access, 8, 47741–47755. CrossRef
24.
Zurück zum Zitat Attfield, S., Kazai, G., Lalmas. M., & Piwowarski, B. (2011). Towards a science of user engagement (position paper). In WSDM Workshop on UMWA. Attfield, S., Kazai, G., Lalmas. M., & Piwowarski, B. (2011). Towards a science of user engagement (position paper). In WSDM Workshop on UMWA.
25.
Zurück zum Zitat Janett, L., et al. (2012). Models of user engagement. User modeling, adaptation, and personalization. UMAP 7379. Janett, L., et al. (2012). Models of user engagement. User modeling, adaptation, and personalization. UMAP 7379.
26.
Zurück zum Zitat Lagun, D., & Mounia, L. (2016). Understanding and measuring user engagement and attention in online news reading. In WSDM’16: Proceedings of the Ninth ACM International Conference on Web Search and Data Mining (pp. 113–122). Lagun, D., & Mounia, L. (2016). Understanding and measuring user engagement and attention in online news reading. In WSDM’16: Proceedings of the Ninth ACM International Conference on Web Search and Data Mining (pp. 113–122).
27.
Zurück zum Zitat Moldovan, C., & Florian, M. (2016). Bridging the gap between qoe and user engagement in http video streaming. In 28th International Teletraffic Congress: The First International Conference in Networking Science and Practice. Moldovan, C., & Florian, M. (2016). Bridging the gap between qoe and user engagement in http video streaming. In 28th International Teletraffic Congress: The First International Conference in Networking Science and Practice.
28.
Zurück zum Zitat Attfield, S., Kazai, G., Lalmas, M., Piwowarski, B. Towards a science of user engagement (position paper). In WSDM Workshop on User Modelling for Web Applications (2011). Attfield, S., Kazai, G., Lalmas, M., Piwowarski, B. Towards a science of user engagement (position paper). In WSDM Workshop on User Modelling for Web Applications (2011).
30.
Zurück zum Zitat Bonilla, M. R., Pereaa, E., del Olmo, J. L., & Corronsb, A. (2020). Insights into user engagement on social media. case study of a higher education institution. Journal of Marketing for Higher Education, 30, 145–160. CrossRef Bonilla, M. R., Pereaa, E., del Olmo, J. L., & Corronsb, A. (2020). Insights into user engagement on social media. case study of a higher education institution. Journal of Marketing for Higher Education, 30, 145–160. CrossRef
31.
Zurück zum Zitat Aung, W. T., Myanmar, Y., & Khin. H. (2009). Random forest classifier for multicategory classification of web pages. In IEEE Asia-Pacific Services Computing Conference (APSCC) (pp. 372–376). Aung, W. T., Myanmar, Y., & Khin. H. (2009). Random forest classifier for multicategory classification of web pages. In IEEE Asia-Pacific Services Computing Conference (APSCC) (pp. 372–376).
32.
Zurück zum Zitat Pal, M., & Mather, P. (2002). A comparison of decision tree and back propagation neural network classifiers for land use classification. In IEEE International Geoscience and Remote Sensing Symposium c’IGARSS (pp. 503–505). Pal, M., & Mather, P. (2002). A comparison of decision tree and back propagation neural network classifiers for land use classification. In IEEE International Geoscience and Remote Sensing Symposium c’IGARSS (pp. 503–505).
33.
Zurück zum Zitat Islam, M. J., Wu, Q. M. l, Ahmadi, M., & Sid-Ahmed, M. A. (2007). Investigating the performance of naive-bayes classifiers and k-nearest neighbor classifiers. In Convergence Information Technology, International Conference (pp. 1541–1546). Islam, M. J., Wu, Q. M. l, Ahmadi, M., & Sid-Ahmed, M. A. (2007). Investigating the performance of naive-bayes classifiers and k-nearest neighbor classifiers. In Convergence Information Technology, International Conference (pp. 1541–1546).
34.
Zurück zum Zitat Fiedler, M., Hossfeld, T., & Tran-Gia, P. (2010). A generic quantitative relationship between quality of experience and quality of service. In IEEE Network: The Magazine of Global Internetworking (pp. 36–41). Fiedler, M., Hossfeld, T., & Tran-Gia, P. (2010). A generic quantitative relationship between quality of experience and quality of service. In IEEE Network: The Magazine of Global Internetworking (pp. 36–41).
35.
Zurück zum Zitat Khan, A., Sun, L., Jammeh, E., & Ifeachor, E. (2010). Quality of experience driven adaptation scheme for video applications over wireless networks. In IET Communications (pp. 1337–1347). Khan, A., Sun, L., Jammeh, E., & Ifeachor, E. (2010). Quality of experience driven adaptation scheme for video applications over wireless networks. In IET Communications (pp. 1337–1347).
36.
Zurück zum Zitat Samet, N., BenLetaifa, A., Hamdi, M., & Tabbane, S. T. (2016). Real-time user experience evaluation for cloud-based mobile video. In International Conference on Advanced Information Networking and Applications Workshops (WAINA) (pp. 204–208). Samet, N., BenLetaifa, A., Hamdi, M., & Tabbane, S. T. (2016). Real-time user experience evaluation for cloud-based mobile video. In International Conference on Advanced Information Networking and Applications Workshops (WAINA) (pp. 204–208).
37.
Zurück zum Zitat Shahid, M., Rossholm, A., & Lövström, B. (2013). A no-reference machine learning based video quality predictor. In International Workshop on Quality of Multimedia Experience (QoMEX) (pp. 176–181). Shahid, M., Rossholm, A., & Lövström, B. (2013). A no-reference machine learning based video quality predictor. In International Workshop on Quality of Multimedia Experience (QoMEX) (pp. 176–181).
38.
Zurück zum Zitat Le Callet, P., Viard-Gaudin, C., & Barba, D. (2006). A convolutional neural network approach for objective video quality assessment. In IEEE Transactions on Neural Networks (pp. 1316–1327). Le Callet, P., Viard-Gaudin, C., & Barba, D. (2006). A convolutional neural network approach for objective video quality assessment. In IEEE Transactions on Neural Networks (pp. 1316–1327).
39.
Zurück zum Zitat Menkovski, V., Exarchakos, G., & Liotta, A. (2010). Machine learning approach for quality of experience aware networks, In International Conference on Intelligent Networking and Collaborative Systems (pp. 461–466). Menkovski, V., Exarchakos, G., & Liotta, A. (2010). Machine learning approach for quality of experience aware networks, In International Conference on Intelligent Networking and Collaborative Systems (pp. 461–466).
40.
Zurück zum Zitat Hameed, A., Dai, R., & Benjamin, B. (2016). A decision-tree-based perceptual video quality prediction model and its application in fec for wireless multimedia communications. In IEEE Transactions on Multimedia (pp. 764–774). Hameed, A., Dai, R., & Benjamin, B. (2016). A decision-tree-based perceptual video quality prediction model and its application in fec for wireless multimedia communications. In IEEE Transactions on Multimedia (pp. 764–774).
41.
Zurück zum Zitat Machado, V. A., & Silva, C. S., et al. (2011). A new proposal to provide estimation of qos and qoe over wimax networks. In IEEE Third Latin-American Conference on Communications. Machado, V. A., & Silva, C. S., et al. (2011). A new proposal to provide estimation of qos and qoe over wimax networks. In IEEE Third Latin-American Conference on Communications.
42.
Zurück zum Zitat Mason, L., Baxter, J., Bartlett, P., & Frean, P. (1999). Boosting algorithms as gradient descent. In: International Conference on Neural Information Processing Systems (pp. 512–518). Mason, L., Baxter, J., Bartlett, P., & Frean, P. (1999). Boosting algorithms as gradient descent. In: International Conference on Neural Information Processing Systems (pp. 512–518).
43.
Zurück zum Zitat Kang, Y., Chen, H., & Lei, X. (2013). An artificial-neural-network-based qoe estimation model for video streaming over wireless networks. In IEEE/CIC International Conference on Communications in China (ICCCC): QRS: QoS, Reliability and Security (pp. 764–774). Kang, Y., Chen, H., & Lei, X. (2013). An artificial-neural-network-based qoe estimation model for video streaming over wireless networks. In IEEE/CIC International Conference on Communications in China (ICCCC): QRS: QoS, Reliability and Security (pp. 764–774).
44.
Zurück zum Zitat Wassermann, S., Wehner, N., & Casas, P. (2019). Machine learning models for youtube qoe and user engagement prediction in smartphones. ACM SIGMETRICS Performance Evaluation, 46, 155–158 Wassermann, S., Wehner, N., & Casas, P. (2019). Machine learning models for youtube qoe and user engagement prediction in smartphones. ACM SIGMETRICS Performance Evaluation, 46, 155–158
45.
Zurück zum Zitat Mendez, A. E., Cartwright, M., & Juan, P. B. (2019). Machine-crowd-expert model for increasing user engagement and annotation quality. In CHI EA ’19 (pp. 1–6). Mendez, A. E., Cartwright, M., & Juan, P. B. (2019). Machine-crowd-expert model for increasing user engagement and annotation quality. In CHI EA ’19 (pp. 1–6).
46.
Zurück zum Zitat Aluri, A., Price, B. S., & Nancy, H. M. (2019). Using machine learning to cocreate value through dynamic customer engagement in a brand loyalty program. Journal of Hospitality and Tourism Research, 43, 78–100. CrossRef Aluri, A., Price, B. S., & Nancy, H. M. (2019). Using machine learning to cocreate value through dynamic customer engagement in a brand loyalty program. Journal of Hospitality and Tourism Research, 43, 78–100. CrossRef
47.
Zurück zum Zitat Chen, Y., Xiong, J., et al. (2018). A novel online incremental and decremental learning algorithm based on variable support vector machine. In Cluster Computing. Chen, Y., Xiong, J., et al. (2018). A novel online incremental and decremental learning algorithm based on variable support vector machine. In Cluster Computing.
48.
Zurück zum Zitat Gao, Q., Dey, P., & Ahammad, P. (2017b). Perceived performance of top retail webpages in the wild: Insights from large-scale crowdsourcing of above-the-fold qoe. In Proceedings of the 2017 SIGCOMM Internet-QoE Workshop. Gao, Q., Dey, P., & Ahammad, P. (2017b). Perceived performance of top retail webpages in the wild: Insights from large-scale crowdsourcing of above-the-fold qoe. In Proceedings of the 2017 SIGCOMM Internet-QoE Workshop.
Metadaten
Titel
How User Engagement Metrics Ameliorate the Web QoE?
verfasst von
Nawres Abdelwahed
Asma Ben Letaifa
Sadok El Asmi
Publikationsdatum
24.11.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07980-1

Weitere Artikel der Ausgabe 3/2021

Wireless Personal Communications 3/2021 Zur Ausgabe