Skip to main content
Erschienen in: Wireless Personal Communications 1/2017

28.05.2017

HRS: A Robust Compressed Sensing Arithmetic in Wireless Equipment Acoustic Signal Test

verfasst von: Changjian Deng, Dongyi Chen

Erschienen in: Wireless Personal Communications | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The wireless equipment acoustic signal compressed sampling has advantages of using less hardware and being robust in the noisy environment. But the major challenges of the wireless acoustic signal compressed sampling are their property of the real time sampling and their constraint of the limited communication resource. The paper designs a new robust compressed sensing arithmetic HSR which uses the hard threshold value to sample interruptly and uses the feature parameters of signal to recover signal. This method is easy to realize, Meanwhile simulation results show that HRS arithmetic is effective and robust.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Griffin, A., Hirvonen, T., Tzagkarakis, C., Mouchtaris, A., & Tsakalides, P. (2011). Single-channel and multi-channel sinusoidal audio coding using compressed sensing. IEEE Transactions on Audio, Speech, and Language Processing, 19(5), 1382–1395.CrossRef Griffin, A., Hirvonen, T., Tzagkarakis, C., Mouchtaris, A., & Tsakalides, P. (2011). Single-channel and multi-channel sinusoidal audio coding using compressed sensing. IEEE Transactions on Audio, Speech, and Language Processing, 19(5), 1382–1395.CrossRef
2.
Zurück zum Zitat Giacobello, D., Christensen, M. G., Murthi, M. N., Jensen, S. H., & Moonen, M. (2010). Retrieving sparse patterns using a compressed sensing framework: Applications to speech coding based on sparse linear prediction. IEEE Signal Processing Letters, 17(1), 103–106.CrossRef Giacobello, D., Christensen, M. G., Murthi, M. N., Jensen, S. H., & Moonen, M. (2010). Retrieving sparse patterns using a compressed sensing framework: Applications to speech coding based on sparse linear prediction. IEEE Signal Processing Letters, 17(1), 103–106.CrossRef
3.
Zurück zum Zitat Giacobello, D., Christensen, M. G., Dahl, J., & Moonen, M. (2008). Sparse linear predictors for speech processing. In Proceedings of the international conference on spoken language processing. Giacobello, D., Christensen, M. G., Dahl, J., & Moonen, M. (2008). Sparse linear predictors for speech processing. In Proceedings of the international conference on spoken language processing.
4.
Zurück zum Zitat Giacobello, D., Van Waterschoot, T., Christensen, M. G., & Jensen, S. H. (2010). High-order sparse linear predictors for audio processing. In Signal Processing Conference, 2010, European, pp. 234–238. Giacobello, D., Van Waterschoot, T., Christensen, M. G., & Jensen, S. H. (2010). High-order sparse linear predictors for audio processing. In Signal Processing Conference, 2010, European, pp. 234–238.
5.
Zurück zum Zitat Giacobello, D., Christensen, M. G., Murthi, M. N., Jensen, S. H., & Moonen, M. (2012). Retrieving sparse patterns using a compressed sensing framework: Applications to speech coding based on sparse linear prediction. IEEE Transactions on Audio, Speech, and Language Processing, 20(5), 1644–1657.CrossRef Giacobello, D., Christensen, M. G., Murthi, M. N., Jensen, S. H., & Moonen, M. (2012). Retrieving sparse patterns using a compressed sensing framework: Applications to speech coding based on sparse linear prediction. IEEE Transactions on Audio, Speech, and Language Processing, 20(5), 1644–1657.CrossRef
6.
Zurück zum Zitat Hassam, M. K., & Maha, E. S. (2014). A comparative study of audio compression based on compressed sensing and sparse fast fourier transform (SFFT): Performance and challenges, arxiv.org/abs/1403.3061. Hassam, M. K., & Maha, E. S. (2014). A comparative study of audio compression based on compressed sensing and sparse fast fourier transform (SFFT): Performance and challenges, arxiv.​org/​abs/​1403.​3061.
7.
Zurück zum Zitat Tropp, J. A., & Gilbert, A. C. (2007). Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53(12), 4655–4666.CrossRefMATHMathSciNet Tropp, J. A., & Gilbert, A. C. (2007). Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53(12), 4655–4666.CrossRefMATHMathSciNet
8.
Zurück zum Zitat Needell, D., & Tropp, J. A. (2009). CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Applied and Computational Harmonic Analysis, 26(3), 301–321.CrossRefMATHMathSciNet Needell, D., & Tropp, J. A. (2009). CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Applied and Computational Harmonic Analysis, 26(3), 301–321.CrossRefMATHMathSciNet
9.
Zurück zum Zitat Blumensath, T., & Davies, M. E. (2009). Iterative hard thresholding for compressed sensing. Applied and Computational Harmonic Analysis, 27(3), 265–274.CrossRefMATHMathSciNet Blumensath, T., & Davies, M. E. (2009). Iterative hard thresholding for compressed sensing. Applied and Computational Harmonic Analysis, 27(3), 265–274.CrossRefMATHMathSciNet
10.
Zurück zum Zitat Figueiredo, M., Nowak, R., & Wright, S. (2007). Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing, 1(4), 586–597.CrossRef Figueiredo, M., Nowak, R., & Wright, S. (2007). Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing, 1(4), 586–597.CrossRef
11.
Zurück zum Zitat Wright, S. J., Nowak, R. D., & Figueiredo, M. A. T. (2009). Sparse reconstruction by separable approximation. IEEE Transactions on Signal Processing, 57(7), 2479–2493.CrossRefMathSciNet Wright, S. J., Nowak, R. D., & Figueiredo, M. A. T. (2009). Sparse reconstruction by separable approximation. IEEE Transactions on Signal Processing, 57(7), 2479–2493.CrossRefMathSciNet
12.
Zurück zum Zitat Donoho, D. L., Maleki, A., & Montanari, A. (2009). Message-passing algorithms for compressed sensing. Proceedings of the National Academy of Sciences of the United States of America, 106(45), 18914–18919.CrossRef Donoho, D. L., Maleki, A., & Montanari, A. (2009). Message-passing algorithms for compressed sensing. Proceedings of the National Academy of Sciences of the United States of America, 106(45), 18914–18919.CrossRef
13.
Zurück zum Zitat Hassanieh, H., Indyk, P., Katabi, D., & Price, E. (2012). Simple and practical algorithm for sparse Fourier transform. In Proceedings of the twenty-third annual ACM-SIAM symposium on discrete algorithms, pp. 1183–1194. Hassanieh, H., Indyk, P., Katabi, D., & Price, E. (2012). Simple and practical algorithm for sparse Fourier transform. In Proceedings of the twenty-third annual ACM-SIAM symposium on discrete algorithms, pp. 1183–1194.
15.
Zurück zum Zitat Pawar, S., & Ramchandran, K. (2014). A robust R-FFAST framework for computing a k-sparse n-length DFT in O(k log n) sample complexity using sparse-graph codes. In IEEE international symposium on information theory, IEEE, pp. 1852–1856. Pawar, S., & Ramchandran, K. (2014). A robust R-FFAST framework for computing a k-sparse n-length DFT in O(k log n) sample complexity using sparse-graph codes. In IEEE international symposium on information theory, IEEE, pp. 1852–1856.
16.
Zurück zum Zitat Pawar, S., & Ramchandran, K. (2013). Computing a k-sparse n-length Discrete Fourier Transform using at most 4k samples and O(k log k) complexity. 2013 IEEE International Symposium on Information Theory, 27(3), 464–468.CrossRef Pawar, S., & Ramchandran, K. (2013). Computing a k-sparse n-length Discrete Fourier Transform using at most 4k samples and O(k log k) complexity. 2013 IEEE International Symposium on Information Theory, 27(3), 464–468.CrossRef
17.
Zurück zum Zitat Roberto, C. A., & Saad, D. (2009). Properties of sparse random matrices over finite fields. Journal of Statistical Mechanics Theory and Experiment, 04, 4–17.MathSciNet Roberto, C. A., & Saad, D. (2009). Properties of sparse random matrices over finite fields. Journal of Statistical Mechanics Theory and Experiment, 04, 4–17.MathSciNet
18.
Zurück zum Zitat Berinde, R., Gilbert, A. C., Indyk, P., Karloff, H., & Strauss, M. J (2008). Combining geometry and combinatory: A unified approach to sparse signal recovery. In IEEE Allerton conference on communication, control, and computing, 2008, 798–805. Berinde, R., Gilbert, A. C., Indyk, P., Karloff, H., & Strauss, M. J (2008). Combining geometry and combinatory: A unified approach to sparse signal recovery. In IEEE Allerton conference on communication, control, and computing, 2008, 798–805.
19.
Zurück zum Zitat Miles, E. L. (2016). Unknown sparsity in compressed sensing: Denoising and inference. IEEE Transactions on Information Theory, 62(9), 5145–5166.CrossRefMATHMathSciNet Miles, E. L. (2016). Unknown sparsity in compressed sensing: Denoising and inference. IEEE Transactions on Information Theory, 62(9), 5145–5166.CrossRefMATHMathSciNet
20.
Zurück zum Zitat Boyer, R., Couillet, R., Fleury, B. H., & Larzabal, P. (2016). Oracle large-system estimation performance in noisy compressed sensing with random support—A bayesian analysis. IEEE Transactions on Singal Processing, 64(21), 5525–5535.CrossRef Boyer, R., Couillet, R., Fleury, B. H., & Larzabal, P. (2016). Oracle large-system estimation performance in noisy compressed sensing with random support—A bayesian analysis. IEEE Transactions on Singal Processing, 64(21), 5525–5535.CrossRef
21.
Zurück zum Zitat Shaghaghi, M., & Vorobyov, S. (2015). CramerRao bound for sparse signals fitting the low-rank model with small number of parameters. IEEE Signal Processing Letters, 22(9), 14971501.CrossRef Shaghaghi, M., & Vorobyov, S. (2015). CramerRao bound for sparse signals fitting the low-rank model with small number of parameters. IEEE Signal Processing Letters, 22(9), 14971501.CrossRef
22.
Zurück zum Zitat Korso, M. N. E., Boyer, R., Larzabal, P., & Fleury, B. H. (2016). Estimation performance for the Bayesian hierarchical linear model. IEEE Signal Processing Letters, 23(4), 488492.CrossRef Korso, M. N. E., Boyer, R., Larzabal, P., & Fleury, B. H. (2016). Estimation performance for the Bayesian hierarchical linear model. IEEE Signal Processing Letters, 23(4), 488492.CrossRef
23.
Zurück zum Zitat Kliesch, M., Kueng, R., Eisert, J., & Gross, D. (2016). Improving compressed sensing with the diamond norm. IEEE Transactions on Information Theory, Mathematics, 62(12), 74457463.MATHMathSciNet Kliesch, M., Kueng, R., Eisert, J., & Gross, D. (2016). Improving compressed sensing with the diamond norm. IEEE Transactions on Information Theory, Mathematics, 62(12), 74457463.MATHMathSciNet
24.
Zurück zum Zitat Rui, M. C., & Tnczos, E. (2017). Adaptive compressed sensing for support recovery of structured sparse sets. IEEE Transactions on Information Theory, 63(3), 15351554.MathSciNet Rui, M. C., & Tnczos, E. (2017). Adaptive compressed sensing for support recovery of structured sparse sets. IEEE Transactions on Information Theory, 63(3), 15351554.MathSciNet
25.
Zurück zum Zitat Cartis, C., & Thompson, A. (2017). Quantitative recovery conditions for tree-based compressed sensing. IEEE Transactions on Information Theory, 63(3), 15551570.CrossRefMATHMathSciNet Cartis, C., & Thompson, A. (2017). Quantitative recovery conditions for tree-based compressed sensing. IEEE Transactions on Information Theory, 63(3), 15551570.CrossRefMATHMathSciNet
26.
Zurück zum Zitat Defraene, B., Mansour, N., De Hertogh, S., Waterschoot, T., Diehl, M., & Moonen, M. (2013). Declipping of audio signals using perceptual compressed sensing. IEEE Transactions on Audio, Speech, and Language Processing, 21(12), 2627–2637.CrossRef Defraene, B., Mansour, N., De Hertogh, S., Waterschoot, T., Diehl, M., & Moonen, M. (2013). Declipping of audio signals using perceptual compressed sensing. IEEE Transactions on Audio, Speech, and Language Processing, 21(12), 2627–2637.CrossRef
Metadaten
Titel
HRS: A Robust Compressed Sensing Arithmetic in Wireless Equipment Acoustic Signal Test
verfasst von
Changjian Deng
Dongyi Chen
Publikationsdatum
28.05.2017
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2017
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-017-4528-1

Weitere Artikel der Ausgabe 1/2017

Wireless Personal Communications 1/2017 Zur Ausgabe

Neuer Inhalt