Skip to main content

2024 | OriginalPaper | Buchkapitel

Human Activity Recognition: Approaches, Datasets, Applications, and Challenges

verfasst von : Alisha Banga, Ravinder Ahuja, S. C. Sharma

Erschienen in: Modern Approaches in IoT and Machine Learning for Cyber Security

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Das Kapitel befasst sich mit Human Activity Recognition (HAR), einem entscheidenden Aspekt des Internets der Dinge (IoT), wobei der Schwerpunkt auf der Klassifizierung menschlicher Bewegungen mittels Sensoren und maschinellem Lernen liegt. Es beginnt mit der Einführung der Bedeutung von HAR und seiner verschiedenen Anwendungen wie Gesundheitsüberwachung, Sicherheitsüberwachung und Smart-Home-Technologien. Das Kapitel untersucht dann verschiedene Ansätze für HAR, einschließlich sensorischer, visionsbasierter und multimodaler Techniken, wobei die Fortschritte beim maschinellen Lernen und bei den Deep-Learning-Algorithmen hervorgehoben werden. Außerdem werden mehrere öffentlich zugängliche Datensätze diskutiert, die für die Ausbildung dieser Algorithmen verwendet werden, wie etwa UCI-HAR und WISDM. Darüber hinaus befasst sich das Kapitel mit den Herausforderungen, vor denen HAR steht, einschließlich der Bereitstellung von Sensoren, der Extraktion von Features und Bedenken hinsichtlich der Privatsphäre. Dieses Kapitel bietet eine detaillierte Analyse des aktuellen Zustands und der zukünftigen Aussichten der HAR und ist daher eine wichtige Ressource für Fachleute, die dieses sich rasch entwickelnde Gebiet verstehen und voranbringen wollen.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Li, L.D.X. Shancang, S. Zhao, The internet of things: A survey. Inf. Syst. Front. 17(2), 243–259 (2015)CrossRef A. Li, L.D.X. Shancang, S. Zhao, The internet of things: A survey. Inf. Syst. Front. 17(2), 243–259 (2015)CrossRef
2.
Zurück zum Zitat C. Jobanputra, J. Bavishi, N. Doshi, Human activity recognition: A survey. Proc. Comput. Sci 155, 698–703 (2019)CrossRef C. Jobanputra, J. Bavishi, N. Doshi, Human activity recognition: A survey. Proc. Comput. Sci 155, 698–703 (2019)CrossRef
3.
Zurück zum Zitat O.C. Ann, L.B. Theng, Human activity recognition: A review, in 2014 IEEE International Conference on Control System, Computing and Engineering (ICCSCE 2014), (IEEE, 2014) O.C. Ann, L.B. Theng, Human activity recognition: A review, in 2014 IEEE International Conference on Control System, Computing and Engineering (ICCSCE 2014), (IEEE, 2014)
4.
Zurück zum Zitat D. Yacchirema et al., Fall detection system for elderly people using IoT and big data. Proc. Comput. Sci 130, 603–610 (2018)CrossRef D. Yacchirema et al., Fall detection system for elderly people using IoT and big data. Proc. Comput. Sci 130, 603–610 (2018)CrossRef
5.
Zurück zum Zitat D. Anguita, A. Ghio, L. Oneto, X. Parra, J.L. Reyes-Ortiz, A public domain dataset for human activity recognition using smartphones, in 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, (Bruges, Belgium, 2013, 24–26 April) D. Anguita, A. Ghio, L. Oneto, X. Parra, J.L. Reyes-Ortiz, A public domain dataset for human activity recognition using smartphones, in 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, (Bruges, Belgium, 2013, 24–26 April)
6.
Zurück zum Zitat B. Laluza, S. Kozina, M. Lustrek, The activity recognition repository: Towards competitive benchmarking in ambient intelligence, in Proc. AAAI Activity Context Represent, Techn. Lang, (2012, Jan), pp. 44–47 B. Laluza, S. Kozina, M. Lustrek, The activity recognition repository: Towards competitive benchmarking in ambient intelligence, in Proc. AAAI Activity Context Represent, Techn. Lang, (2012, Jan), pp. 44–47
7.
Zurück zum Zitat D. Garcia-Gonzalez, D. Rivero, E. Fernandez-Blanco, M.R. Luaces, A public domain dataset for real-life human activity recognition using smartphone sensors. Sensors 20(8), 2200 (2020)CrossRef D. Garcia-Gonzalez, D. Rivero, E. Fernandez-Blanco, M.R. Luaces, A public domain dataset for real-life human activity recognition using smartphone sensors. Sensors 20(8), 2200 (2020)CrossRef
8.
Zurück zum Zitat G.M. Weiss, K. Yoneda, T. Hayajneh. Smartphone and smartwatch-based biometrics using activities of daily living. IEEE Access 7, 133190–133202 (2019)CrossRef G.M. Weiss, K. Yoneda, T. Hayajneh. Smartphone and smartwatch-based biometrics using activities of daily living. IEEE Access 7, 133190–133202 (2019)CrossRef
9.
Zurück zum Zitat L. Cheng, Y. Guan, K. Zhu, Y. Li. Recognition of human activities using machine learning methods with wearable sensors, in 2017 IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC), (IEEE, 2017, Jan), pp. 1–7 L. Cheng, Y. Guan, K. Zhu, Y. Li. Recognition of human activities using machine learning methods with wearable sensors, in 2017 IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC), (IEEE, 2017, Jan), pp. 1–7
10.
Zurück zum Zitat Z. Hussain, M. Sheng, W.E. Zhang, Different approaches for human activity recognition: A survey. arXiv preprint arXiv:1906.05074 (2019) Z. Hussain, M. Sheng, W.E. Zhang, Different approaches for human activity recognition: A survey. arXiv preprint arXiv:1906.05074 (2019)
11.
Zurück zum Zitat Z. Gulzar, A. A. Leema, I. Malaserene Human Activity Analysis using Machine Learning Classification Techniques, Int. J. Innov. Technol. Explor. Eng 9(2), 3252–3258 (2019) Z. Gulzar, A. A. Leema, I. Malaserene Human Activity Analysis using Machine Learning Classification Techniques, Int. J. Innov. Technol. Explor. Eng 9(2), 3252–3258 (2019)
12.
Zurück zum Zitat S. Ranasinghe, F. Al Machot, H.C. Mayr. A review on applications of activity recognition systems with regard to performance and evaluation. Int. J. Distrib. Sensor Netw 12(8), 1550147716665520 (2016)CrossRef S. Ranasinghe, F. Al Machot, H.C. Mayr. A review on applications of activity recognition systems with regard to performance and evaluation. Int. J. Distrib. Sensor Netw 12(8), 1550147716665520 (2016)CrossRef
13.
Zurück zum Zitat F. Fusier, V. Valentin, F. Bremond, et al., Video understanding for complex activity recognition. Mach. Vis. Appl 18(3–4), 167–188 (2007)CrossRefMATH F. Fusier, V. Valentin, F. Bremond, et al., Video understanding for complex activity recognition. Mach. Vis. Appl 18(3–4), 167–188 (2007)CrossRefMATH
15.
Zurück zum Zitat K. Chen, D. Zhang, L. Yao, B. Guo, Z. Yu, Y. Liu, Deep learning for sensor-based human activity recognition: overview, challenges and opportunities. arXiv preprint arXiv:2001.07416 (2020) K. Chen, D. Zhang, L. Yao, B. Guo, Z. Yu, Y. Liu, Deep learning for sensor-based human activity recognition: overview, challenges and opportunities. arXiv preprint arXiv:2001.07416 (2020)
16.
Zurück zum Zitat A. Agrawal, R. Ahuja, Deep Learning Algorithms for human activity recognition: A comparative analysis. Cybernetics, cognition and machine learning applications: Proceedings of ICCCMLA 2020, p. 391, 2021 A. Agrawal, R. Ahuja, Deep Learning Algorithms for human activity recognition: A comparative analysis. Cybernetics, cognition and machine learning applications: Proceedings of ICCCMLA 2020, p. 391, 2021
17.
Zurück zum Zitat J.M. Lien, G. Kurillo, R. Bajcsy, Multi-camera tele-immersion system with real-time model driven data compression. Vis. Comput. 26(1), 3–15 (2010)CrossRef J.M. Lien, G. Kurillo, R. Bajcsy, Multi-camera tele-immersion system with real-time model driven data compression. Vis. Comput. 26(1), 3–15 (2010)CrossRef
18.
Zurück zum Zitat R. Chavarriaga, H. Sagha, A. Calatroni, S.T. Digumarti, G. Tröster, J.D.R. Millán, D. Roggen, The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recogn. Lett. 34(15), 2033–2042 (2013)CrossRef R. Chavarriaga, H. Sagha, A. Calatroni, S.T. Digumarti, G. Tröster, J.D.R. Millán, D. Roggen, The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recogn. Lett. 34(15), 2033–2042 (2013)CrossRef
19.
Zurück zum Zitat M.C. Kwon, S. Choi, Recognition of daily human activity using an artificial neural network and smartwatch. Wirel. Commun. Mob. Comput. 2018, 1 (2018)CrossRef M.C. Kwon, S. Choi, Recognition of daily human activity using an artificial neural network and smartwatch. Wirel. Commun. Mob. Comput. 2018, 1 (2018)CrossRef
20.
Zurück zum Zitat H. Vellampalli, Physical human activity recognition using machine learning algorithms (2017) H. Vellampalli, Physical human activity recognition using machine learning algorithms (2017)
21.
Zurück zum Zitat P.S. Abdul Lateef Haroon, Human activity recognition using machine learning approach. J. Robot. Contr 2(5), 395–399 (2021) P.S. Abdul Lateef Haroon, Human activity recognition using machine learning approach. J. Robot. Contr 2(5), 395–399 (2021)
22.
Zurück zum Zitat Y. Min, Y.Y. Htay, K.K. Oo, Comparing the performance of Machine Learning Algorithms for human activities recognition using WISDM dataset. Int. J. Comput 38(1), 61–72 (2020) Y. Min, Y.Y. Htay, K.K. Oo, Comparing the performance of Machine Learning Algorithms for human activities recognition using WISDM dataset. Int. J. Comput 38(1), 61–72 (2020)
23.
Zurück zum Zitat N. Ahmed, J.I. Rafiq, M.R. Islam, Enhanced human activity recognition based on smartphone sensor data using hybrid feature selection model. Sensors 20(1), 317 (2020)CrossRef N. Ahmed, J.I. Rafiq, M.R. Islam, Enhanced human activity recognition based on smartphone sensor data using hybrid feature selection model. Sensors 20(1), 317 (2020)CrossRef
24.
Zurück zum Zitat J.B. Rana, R. Shetty, T. Jha, Application of Machine Learning Techniques in Human Activity Recognition. arXiv preprint arXiv:1510.05577 (2015) J.B. Rana, R. Shetty, T. Jha, Application of Machine Learning Techniques in Human Activity Recognition. arXiv preprint arXiv:1510.05577 (2015)
25.
Zurück zum Zitat F.M. Noori, M. Riegler, M.Z. Uddin, J. Torresen, Human activity recognition from multiple sensors data using multi-fusion representations and CNNs. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 16(2), 1–19 (2020)CrossRef F.M. Noori, M. Riegler, M.Z. Uddin, J. Torresen, Human activity recognition from multiple sensors data using multi-fusion representations and CNNs. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 16(2), 1–19 (2020)CrossRef
26.
Zurück zum Zitat P. Mishra, S. Dey, S.S. Ghosh, D.B. Seal, S. Goswami, Human activity recognition using Deep Neural Network, in 2019 International Conference on Data Science and Engineering (ICDSE), (IEEE, 2019, September), pp. 77–83 P. Mishra, S. Dey, S.S. Ghosh, D.B. Seal, S. Goswami, Human activity recognition using Deep Neural Network, in 2019 International Conference on Data Science and Engineering (ICDSE), (IEEE, 2019, September), pp. 77–83
27.
Zurück zum Zitat L. Alawneh, T. Alsarhan, M. Al-Zinati, M. Al-Ayyoub, Y. Jararweh, H. Lu, Enhancing human activity recognition using deep learning and time series augmented data. J. Ambient. Intell. Humaniz. Comput. 12, 1–16 (2021)CrossRef L. Alawneh, T. Alsarhan, M. Al-Zinati, M. Al-Ayyoub, Y. Jararweh, H. Lu, Enhancing human activity recognition using deep learning and time series augmented data. J. Ambient. Intell. Humaniz. Comput. 12, 1–16 (2021)CrossRef
28.
Zurück zum Zitat D. Browne, M. Giering, S. Prestwich, Deep learning human activity recognition, in CEUR Workshop Proceedings, vol. 2563, (Sun SITE Central Europe, 2019), pp. 76–87 D. Browne, M. Giering, S. Prestwich, Deep learning human activity recognition, in CEUR Workshop Proceedings, vol. 2563, (Sun SITE Central Europe, 2019), pp. 76–87
29.
Zurück zum Zitat S. Abbaspour, F. Fotouhi, A. Sedaghatbaf, H. Fotouhi, M. Vahabi, M. Linden, A comparative analysis of hybrid deep learning models for human activity recognition. Sensors 20(19), 5707 (2020)CrossRef S. Abbaspour, F. Fotouhi, A. Sedaghatbaf, H. Fotouhi, M. Vahabi, M. Linden, A comparative analysis of hybrid deep learning models for human activity recognition. Sensors 20(19), 5707 (2020)CrossRef
30.
Zurück zum Zitat D.K.R. Gaddam, M.D. Ansari, S. Vuppala, V.K. Gunjan, M.M. Sati, Human facial emotion detection using deep learning, in ICDSMLA 2020, (Springer, Singapore, 2022a), pp. 1417–1427CrossRef D.K.R. Gaddam, M.D. Ansari, S. Vuppala, V.K. Gunjan, M.M. Sati, Human facial emotion detection using deep learning, in ICDSMLA 2020, (Springer, Singapore, 2022a), pp. 1417–1427CrossRef
31.
Zurück zum Zitat E. Rashid, M.D. Ansari, V.K. Gunjan, M. Ahmed, Improvement in extended object tracking with the vision-based algorithm, in Modern Approaches in Machine Learning and Cognitive Science: A Walkthrough, (Springer, Cham, 2020), pp. 237–245CrossRef E. Rashid, M.D. Ansari, V.K. Gunjan, M. Ahmed, Improvement in extended object tracking with the vision-based algorithm, in Modern Approaches in Machine Learning and Cognitive Science: A Walkthrough, (Springer, Cham, 2020), pp. 237–245CrossRef
32.
Zurück zum Zitat D.K.R. Gaddam, M.D. Ansari, S. Vuppala, V.K. Gunjan, M.M. Sati, Human facial emotion detection using deep learning, in ICDSMLA 2020, (Springer, Singapore, 2022b), pp. 1417–1427CrossRef D.K.R. Gaddam, M.D. Ansari, S. Vuppala, V.K. Gunjan, M.M. Sati, Human facial emotion detection using deep learning, in ICDSMLA 2020, (Springer, Singapore, 2022b), pp. 1417–1427CrossRef
Metadaten
Titel
Human Activity Recognition: Approaches, Datasets, Applications, and Challenges
verfasst von
Alisha Banga
Ravinder Ahuja
S. C. Sharma
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-09955-7_7