Skip to main content

2017 | OriginalPaper | Buchkapitel

Human Control of Interactions with Objects – Variability, Stability and Predictability

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

How do humans control their actions and interactions with the physical world? How do we learn to throw a ball or drink a glass of wine without spilling? Compared to robots human dexterity remains astonishing, especially as slow neural transmission and high levels of noise seem to plague the biological system. What are human control strategies that skillfully navigate, overcome, and even exploit these disadvantages? To gain insight we propose an approach that centers on how task dynamics constrain and enable (inter-)actions. Agnostic about details of the controller, we start with a physical model of the task that permits full understanding of the solution space. Rendering the task in a virtual environment, we examine how humans learn solutions that meet complex task demands. Central to numerous skills is redundancy that allows exploration and exploitation of subsets of solutions. We hypothesize that humans seek solutions that are stable to perturbations to make their intrinsic noise matter less. With fewer corrections necessary, the system is less afflicted by long delays in the feedback loop. Three experimental paradigms exemplify our approach: throwing a ball to a target, rhythmic bouncing of a ball, and carrying a complex object. For the throwing task, results show that actors are sensitive to the error-tolerance afforded by the task. In rhythmic ball bouncing, subjects exploit the dynamic stability of the paddle-ball system. When manipulating a “glass of wine”, subjects learn strategies that make the hand-object interactions more predictable. These findings set the stage for developing propositions about the controller: We posit that complex actions are generated with dynamic primitives, modules with attractor stability that are less sensitive to delays and noise in the neuro-mechanical system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
2.
Zurück zum Zitat D. Angelaki, Y. Gu, G. Deangelis, Multisensory integration: psychophysics, neurophysiology, and computation. Current Opin. Neurobiol. 19, 452–458 (2009)CrossRef D. Angelaki, Y. Gu, G. Deangelis, Multisensory integration: psychophysics, neurophysiology, and computation. Current Opin. Neurobiol. 19, 452–458 (2009)CrossRef
3.
Zurück zum Zitat B. Berret, F. Jean, Why don’t we move slower? The value of time in the neural control of action. J. Neurosci. 36, 1056–1070 (2016)CrossRef B. Berret, F. Jean, Why don’t we move slower? The value of time in the neural control of action. J. Neurosci. 36, 1056–1070 (2016)CrossRef
4.
Zurück zum Zitat E. Bizzi, N. Accornero, W. Chapple, N. Hogan, Posture control and trajectory formation during arm movements. J. Neurosci. 4, 2738–2744 (1984) E. Bizzi, N. Accornero, W. Chapple, N. Hogan, Posture control and trajectory formation during arm movements. J. Neurosci. 4, 2738–2744 (1984)
5.
Zurück zum Zitat W. Chu, S.-W. Park, T. Sanger, D. Sternad, Dystonic children can learn a novel motor skill: strategies that are tolerant to high variability. IEEE Trans. Neural Syst. Rehabil. Eng. 24(8), 847–858 (2016) W. Chu, S.-W. Park, T. Sanger, D. Sternad, Dystonic children can learn a novel motor skill: strategies that are tolerant to high variability. IEEE Trans. Neural Syst. Rehabil. Eng. 24(8), 847–858 (2016)
6.
Zurück zum Zitat W. Chu, D. Sternad, T. Sanger, Healthy and dystonic children compensate for changes in motor variability. J. Neurophysiol. 109, 2169–2178 (2013)CrossRef W. Chu, D. Sternad, T. Sanger, Healthy and dystonic children compensate for changes in motor variability. J. Neurophysiol. 109, 2169–2178 (2013)CrossRef
7.
Zurück zum Zitat R.G. Cohen, D. Sternad, Variability in motor learning: relocating, channeling and reducing noise. Exp. Brain Res. 193, 69–83 (2009)CrossRef R.G. Cohen, D. Sternad, Variability in motor learning: relocating, channeling and reducing noise. Exp. Brain Res. 193, 69–83 (2009)CrossRef
8.
Zurück zum Zitat R.G. Cohen, D. Sternad, State space analysis of intrinsic timing: exploiting task redundancy to reduce sensitivity to timing. J. Neurophysiol. 107, 618–627 (2012)CrossRef R.G. Cohen, D. Sternad, State space analysis of intrinsic timing: exploiting task redundancy to reduce sensitivity to timing. J. Neurophysiol. 107, 618–627 (2012)CrossRef
9.
Zurück zum Zitat T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, Hoboken, 2006) T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, Hoboken, 2006)
11.
Zurück zum Zitat T.M.H. Dijkstra, H. Katsumata, A. de Rugy, D. Sternad, The dialogue between data and model: passive stability and relaxation behavior in a ball bouncing task. Nonlinear Stud. 11, 319–345 (2004)MathSciNetMATH T.M.H. Dijkstra, H. Katsumata, A. de Rugy, D. Sternad, The dialogue between data and model: passive stability and relaxation behavior in a ball bouncing task. Nonlinear Stud. 11, 319–345 (2004)MathSciNetMATH
12.
Zurück zum Zitat A.M. Dollar, R.D. Howe, Towards grasping in unstructured environments: grasper compliance and configuration optimization. Adv. Robot. 19, 523–543 (2005)CrossRef A.M. Dollar, R.D. Howe, Towards grasping in unstructured environments: grasper compliance and configuration optimization. Adv. Robot. 19, 523–543 (2005)CrossRef
13.
Zurück zum Zitat A.A. Faisal, L.P. Selen, D.M. Wolpert, Noise in the nervous system. Nat. Rev. Neurosci. 9, 292–303 (2008)CrossRef A.A. Faisal, L.P. Selen, D.M. Wolpert, Noise in the nervous system. Nat. Rev. Neurosci. 9, 292–303 (2008)CrossRef
14.
Zurück zum Zitat A.G. Feldman, Functional tuning of the nervous system with control of movement or maintenance of a steady posture: II) Controllable parameters of the muscle. Biophysics 11, 565–578 (1966a) A.G. Feldman, Functional tuning of the nervous system with control of movement or maintenance of a steady posture: II) Controllable parameters of the muscle. Biophysics 11, 565–578 (1966a)
15.
Zurück zum Zitat A.G. Feldman, Functional tuning of the nervous system with control of movement or maintenance of a steady posture: III) Mechanographic analysis of execution by man of the simplest motor task. Biophysics 11, 667–675 (1966b) A.G. Feldman, Functional tuning of the nervous system with control of movement or maintenance of a steady posture: III) Mechanographic analysis of execution by man of the simplest motor task. Biophysics 11, 667–675 (1966b)
16.
Zurück zum Zitat P.M. Fitts, The information capacity of the human motor system in controlling the amplitude of movement. J. Exp. Psychol. 47, 381–391 (1954)CrossRef P.M. Fitts, The information capacity of the human motor system in controlling the amplitude of movement. J. Exp. Psychol. 47, 381–391 (1954)CrossRef
17.
Zurück zum Zitat P.M. Fitts, J.R. Peterson, Information capacity of discrete motor responses. J. Exp. Psychol. 67, 103–112 (1964)CrossRef P.M. Fitts, J.R. Peterson, Information capacity of discrete motor responses. J. Exp. Psychol. 67, 103–112 (1964)CrossRef
18.
19.
Zurück zum Zitat M. Franek, J. Mates, T. Radil, K. Beck, E. Pöppel, Finger tappping in musicians and non-musicians. Int. J. Psychophysiol. 11, 277–279 (1991)CrossRef M. Franek, J. Mates, T. Radil, K. Beck, E. Pöppel, Finger tappping in musicians and non-musicians. Int. J. Psychophysiol. 11, 277–279 (1991)CrossRef
20.
Zurück zum Zitat H. Gomi, M. Kawato, Equilibrium-point control hypothesis examined by measured arm stiffness during multijoint movement. Science 272, 117–220 (1996) H. Gomi, M. Kawato, Equilibrium-point control hypothesis examined by measured arm stiffness during multijoint movement. Science 272, 117–220 (1996)
21.
Zurück zum Zitat J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, New York, 1983)CrossRefMATH J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, New York, 1983)CrossRefMATH
22.
Zurück zum Zitat H. Haken, J.A.S. Kelso, H. Bunz, A theoretical model of phase transition in human hand movements. Biol. Cybern. 51, 347–356 (1985)MathSciNetCrossRefMATH H. Haken, J.A.S. Kelso, H. Bunz, A theoretical model of phase transition in human hand movements. Biol. Cybern. 51, 347–356 (1985)MathSciNetCrossRefMATH
23.
Zurück zum Zitat C. Hasson, T. Shen, D. Sternad, Energy margins in dynamic object manipulation. J. Neurophysiol. 108, 1349–1365 (2012)CrossRef C. Hasson, T. Shen, D. Sternad, Energy margins in dynamic object manipulation. J. Neurophysiol. 108, 1349–1365 (2012)CrossRef
25.
Zurück zum Zitat N. Hogan, An organizing principle for a class of voluntary movements. J. Neurosci. 4, 2745–2754 (1984) N. Hogan, An organizing principle for a class of voluntary movements. J. Neurosci. 4, 2745–2754 (1984)
26.
Zurück zum Zitat N. Hogan, D. Sternad, On rhythmic and discrete movements: reflections, definitions and implications for motor control. Exp. Brain Res. 18, 13–30 (2007)CrossRef N. Hogan, D. Sternad, On rhythmic and discrete movements: reflections, definitions and implications for motor control. Exp. Brain Res. 18, 13–30 (2007)CrossRef
27.
Zurück zum Zitat N. Hogan, D. Sternad, Sensitivity of smoothness measures to movement duration, amplitude, and arrests. J. Motor Behavior 41, 529–534 (2009)CrossRef N. Hogan, D. Sternad, Sensitivity of smoothness measures to movement duration, amplitude, and arrests. J. Motor Behavior 41, 529–534 (2009)CrossRef
30.
Zurück zum Zitat M. Huber, D. Sternad, Implicit guidance to stable performance in a rhythmic perceptual-motor skill. Exp. Brain Res. 233, 1783–1799 (2015)CrossRef M. Huber, D. Sternad, Implicit guidance to stable performance in a rhythmic perceptual-motor skill. Exp. Brain Res. 233, 1783–1799 (2015)CrossRef
31.
Zurück zum Zitat A. Ijspeert, Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21, 642–653 (2008)CrossRef A. Ijspeert, Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21, 642–653 (2008)CrossRef
32.
Zurück zum Zitat E.R. Kandel, T.M.J. Schwartz, T.M. Jessel, Principles of Neural Sciences (Elsevier, New York, 1991) E.R. Kandel, T.M.J. Schwartz, T.M. Jessel, Principles of Neural Sciences (Elsevier, New York, 1991)
33.
Zurück zum Zitat J.A.S. Kelso, Phase transitions and critical behavior in human bimanual coordination. Am. J. Physiol.: Regul. Integr. Comp. Physiol. 15, R1000–R1004 (1984) J.A.S. Kelso, Phase transitions and critical behavior in human bimanual coordination. Am. J. Physiol.: Regul. Integr. Comp. Physiol. 15, R1000–R1004 (1984)
34.
Zurück zum Zitat J.A.S. Kelso, Elementary coordination dynamics, in Interlimb coordination: Neural, dynamical, and cognitive constraints, ed. by S. Swinnen, H. Heuer, J. Massion P. Casaer (Academic Press, New York, 1994) J.A.S. Kelso, Elementary coordination dynamics, in Interlimb coordination: Neural, dynamical, and cognitive constraints, ed. by S. Swinnen, H. Heuer, J. Massion P. Casaer (Academic Press, New York, 1994)
35.
Zurück zum Zitat I. Kurtzer, J. Pruszynski, S. Scott, Long-latency reflexes of the human arm reflect an internal model of limb dynamics. Current Biol. 18, 449–453 (2008)CrossRef I. Kurtzer, J. Pruszynski, S. Scott, Long-latency reflexes of the human arm reflect an internal model of limb dynamics. Current Biol. 18, 449–453 (2008)CrossRef
36.
Zurück zum Zitat M.L. Latash, Control of human movements. Human Kinetics (Urbana, Champaign, IL, 1993) M.L. Latash, Control of human movements. Human Kinetics (Urbana, Champaign, IL, 1993)
37.
Zurück zum Zitat Z. Li, M. Latash, V. Zatsiorsky, Force sharing among fingers as a model of the redundancy problem. Exp. Brain Res. 119, 276–286 (1998)CrossRef Z. Li, M. Latash, V. Zatsiorsky, Force sharing among fingers as a model of the redundancy problem. Exp. Brain Res. 119, 276–286 (1998)CrossRef
38.
Zurück zum Zitat H.C. Mayer, R. Krechetnikov, Walking with coffee: why does it spill? Phys. Rev. E 85, 046117 (2012)CrossRef H.C. Mayer, R. Krechetnikov, Walking with coffee: why does it spill? Phys. Rev. E 85, 046117 (2012)CrossRef
39.
Zurück zum Zitat B. Mehta, S. Schaal, Forward models in visuomotor control. J. Neurophysiol. 88, 942–953 (2002) B. Mehta, S. Schaal, Forward models in visuomotor control. J. Neurophysiol. 88, 942–953 (2002)
40.
Zurück zum Zitat A. Nagengast, D. Braun, D. Wolpert, Optimal control predicts human performance on objects with internal degrees of freedom. PLoS Comput. Biol. 5, e1000419 (2009)MathSciNetCrossRef A. Nagengast, D. Braun, D. Wolpert, Optimal control predicts human performance on objects with internal degrees of freedom. PLoS Comput. Biol. 5, e1000419 (2009)MathSciNetCrossRef
41.
42.
Zurück zum Zitat R. Plamondon, A.M. Alimi, Speed/accuracy trade-offs in target-directed movements. Behavior Brain Sci. 20, 1–31 (1997) R. Plamondon, A.M. Alimi, Speed/accuracy trade-offs in target-directed movements. Behavior Brain Sci. 20, 1–31 (1997)
43.
Zurück zum Zitat E. Robertson, The serial reaction time task: implicit motor skill learning? J. Neurosci. 27, 10073–10075 (2007)CrossRef E. Robertson, The serial reaction time task: implicit motor skill learning? J. Neurosci. 27, 10073–10075 (2007)CrossRef
44.
Zurück zum Zitat R. Ronsse, D. Sternad, Bouncing between model and data: stability, passivity, and optimality in hybrid dynamics. J. Motor Behavior 6, 387–397 (2010) R. Ronsse, D. Sternad, Bouncing between model and data: stability, passivity, and optimality in hybrid dynamics. J. Motor Behavior 6, 387–397 (2010)
45.
Zurück zum Zitat R. Ronsse, D. Sternad, P. Lefevre, A computational model for rhythmic and discrete movements in uni- and bimanual coordination. Neural Comput. 21, 1335–1370 (2009)MathSciNetCrossRefMATH R. Ronsse, D. Sternad, P. Lefevre, A computational model for rhythmic and discrete movements in uni- and bimanual coordination. Neural Comput. 21, 1335–1370 (2009)MathSciNetCrossRefMATH
46.
Zurück zum Zitat R. Ronsse, K. Wei, D. Sternad, Optimal control of cyclical movements: the bouncing ball revisited. J. Neurophysiol. 103, 2482–2493 (2010)CrossRef R. Ronsse, K. Wei, D. Sternad, Optimal control of cyclical movements: the bouncing ball revisited. J. Neurophysiol. 103, 2482–2493 (2010)CrossRef
47.
Zurück zum Zitat J. Rothwell, Control of Human Voluntary Movement (Springer, New York, 2012) J. Rothwell, Control of Human Voluntary Movement (Springer, New York, 2012)
49.
Zurück zum Zitat A. Sauret, F. Boulogne, J. Cappello, E. Dressaire, H. Stone, Damping of liquid sloshing by foams: from everyday observations to liquid transport. Phys. Fluids 27, 022103 (2015) A. Sauret, F. Boulogne, J. Cappello, E. Dressaire, H. Stone, Damping of liquid sloshing by foams: from everyday observations to liquid transport. Phys. Fluids 27, 022103 (2015)
50.
Zurück zum Zitat S. Schaal, S. Kotosaka, D. Sternad, Nonlinear dynamical systems as movement primitives, in Proceedings of the 1st IEEE-RAS International Conference on Humanoid Robotics (Humanoids 2000), Cambridge, MA, September 7–9 2000 S. Schaal, S. Kotosaka, D. Sternad, Nonlinear dynamical systems as movement primitives, in Proceedings of the 1st IEEE-RAS International Conference on Humanoid Robotics (Humanoids 2000), Cambridge, MA, September 7–9 2000
51.
Zurück zum Zitat S. Schaal, D. Sternad, Programmable pattern generators, in International Conference on Computational Intelligence in Neuroscience (ICCIN ’98), Research Triangle Park, NC, Oct 24–26 1998 S. Schaal, D. Sternad, Programmable pattern generators, in International Conference on Computational Intelligence in Neuroscience (ICCIN ’98), Research Triangle Park, NC, Oct 24–26 1998
52.
Zurück zum Zitat S. Schaal, D. Sternad, Origins and violations of the 2/3 power law. Exp. Brain Res. 136, 60–72 (2001)CrossRef S. Schaal, D. Sternad, Origins and violations of the 2/3 power law. Exp. Brain Res. 136, 60–72 (2001)CrossRef
53.
Zurück zum Zitat S. Schaal, D. Sternad, C.G. Atkeson, One-handed juggling: a dynamical approach to a rhythmic movement task. J. Motor Behavior 28, 165–183 (1996)CrossRef S. Schaal, D. Sternad, C.G. Atkeson, One-handed juggling: a dynamical approach to a rhythmic movement task. J. Motor Behavior 28, 165–183 (1996)CrossRef
54.
Zurück zum Zitat S. Schaal, D. Sternad, R. Osu, M. Kawato, Rhythmic arm movement is not discrete. Nature Neurosci. 7, 1136–1143 (2004)CrossRef S. Schaal, D. Sternad, R. Osu, M. Kawato, Rhythmic arm movement is not discrete. Nature Neurosci. 7, 1136–1143 (2004)CrossRef
55.
Zurück zum Zitat J. Scholz, G. Schöner, The uncontrolled manifold concept: identifying control variables for a functional task. Exp. Brain Res. 126, 289–306 (1999)CrossRef J. Scholz, G. Schöner, The uncontrolled manifold concept: identifying control variables for a functional task. Exp. Brain Res. 126, 289–306 (1999)CrossRef
56.
Zurück zum Zitat S.H. Scott, Optimal feedback control and the neural basis of volitional motor control. Nature Rev. Neurosci. 5, 532–546 (2004)CrossRef S.H. Scott, Optimal feedback control and the neural basis of volitional motor control. Nature Rev. Neurosci. 5, 532–546 (2004)CrossRef
57.
Zurück zum Zitat R. Shadmehr, F.A. Mussa-Ivaldi, Adaptive representation of dynamics during learning of a motor task. J. Neurosci. 14, 3208–3224 (1994) R. Shadmehr, F.A. Mussa-Ivaldi, Adaptive representation of dynamics during learning of a motor task. J. Neurosci. 14, 3208–3224 (1994)
58.
Zurück zum Zitat R. Shadmehr, S.P. Wise, Computational Neurobiology of Reaching and Pointing: A Foundation for Motor Learning (MIT Press, Cambridge, 2005) R. Shadmehr, S.P. Wise, Computational Neurobiology of Reaching and Pointing: A Foundation for Motor Learning (MIT Press, Cambridge, 2005)
59.
Zurück zum Zitat D. Sternad, Towards a unified framework for rhythmic and discrete movements: behavioral, modeling and imaging results, in Coordination: Neural, Behavioral and Social Dynamics, ed. by A. Fuchs, V. Jirsa (Springer, New York, 2008) D. Sternad, Towards a unified framework for rhythmic and discrete movements: behavioral, modeling and imaging results, in Coordination: Neural, Behavioral and Social Dynamics, ed. by A. Fuchs, V. Jirsa (Springer, New York, 2008)
60.
Zurück zum Zitat D. Sternad, From theoretical analysis to clinical assessment and intervention: three interactive motor skills in a virtual environment, in Proceedings of the IEEE International Conference on (ICVR) Virtual Rehabilitation, June 9–12 2015, Valencia, Spain (2015), pp. 265–272 D. Sternad, From theoretical analysis to clinical assessment and intervention: three interactive motor skills in a virtual environment, in Proceedings of the IEEE International Conference on (ICVR) Virtual Rehabilitation, June 9–12 2015, Valencia, Spain (2015), pp. 265–272
61.
Zurück zum Zitat D. Sternad, M.O. Abe, X. Hu, H. Müller, Neuromotor noise, sensitivity to error and signal-dependent noise in trial-to-trial learning. PLoS Comput. Biol. 7, e1002159 (2011)CrossRef D. Sternad, M.O. Abe, X. Hu, H. Müller, Neuromotor noise, sensitivity to error and signal-dependent noise in trial-to-trial learning. PLoS Comput. Biol. 7, e1002159 (2011)CrossRef
62.
Zurück zum Zitat D. Sternad, D. Collins, M.T. Turvey, The detuning factor in the dynamics of interlimb rhythmic coordination. Biol. Cybern. 73, 27–35 (1995)CrossRef D. Sternad, D. Collins, M.T. Turvey, The detuning factor in the dynamics of interlimb rhythmic coordination. Biol. Cybern. 73, 27–35 (1995)CrossRef
63.
Zurück zum Zitat D. Sternad, W.J. Dean, Rhythmic and discrete elements in multijoint coordination. Brain Res 989, 151–172 (2003)CrossRef D. Sternad, W.J. Dean, Rhythmic and discrete elements in multijoint coordination. Brain Res 989, 151–172 (2003)CrossRef
64.
Zurück zum Zitat D. Sternad, W.J. Dean, S. Schaal, Interaction of rhythmic and discrete pattern generators in single-joint movements. Hum. Mov. Sci. 19, 627–665 (2000a)CrossRef D. Sternad, W.J. Dean, S. Schaal, Interaction of rhythmic and discrete pattern generators in single-joint movements. Hum. Mov. Sci. 19, 627–665 (2000a)CrossRef
65.
Zurück zum Zitat D. Sternad, M. Duarte, H. Katsumata, S. Schaal, Dynamics of a bouncing ball in human performance. Phys. Rev. E 63, 011902-1–011902-8 (2000) D. Sternad, M. Duarte, H. Katsumata, S. Schaal, Dynamics of a bouncing ball in human performance. Phys. Rev. E 63, 011902-1–011902-8 (2000)
66.
Zurück zum Zitat D. Sternad, M. Duarte, H. Katsumata, S. Schaal, Bouncing a ball: tuning into dynamic stability. J. Exp. Psychol.: Hum. Percept. Perform. 27, 1163–1184 (2001) D. Sternad, M. Duarte, H. Katsumata, S. Schaal, Bouncing a ball: tuning into dynamic stability. J. Exp. Psychol.: Hum. Percept. Perform. 27, 1163–1184 (2001)
67.
Zurück zum Zitat D. Sternad, C. Hasson, Predictability and robustness in the manipulation of dynamically complex objects, Adv. Exp. Med. Biol. 957, 55–77 (2016) D. Sternad, C. Hasson, Predictability and robustness in the manipulation of dynamically complex objects, Adv. Exp. Med. Biol. 957, 55–77 (2016)
68.
Zurück zum Zitat D. Sternad, M.E. Huber, N. Kuznetsov, Acquisition of novel and complex motor skills: stable solutions where intrinsic noise matters less. Adv. Exp. Med. Biol. 826, 101–124 (2014)CrossRef D. Sternad, M.E. Huber, N. Kuznetsov, Acquisition of novel and complex motor skills: stable solutions where intrinsic noise matters less. Adv. Exp. Med. Biol. 826, 101–124 (2014)CrossRef
69.
Zurück zum Zitat D. Sternad, S. Park, H. Müller, N. Hogan, Coordinate dependency of variability analysis. PLoS Comput. Biol. 6, e1000751 (2010)CrossRef D. Sternad, S. Park, H. Müller, N. Hogan, Coordinate dependency of variability analysis. PLoS Comput. Biol. 6, e1000751 (2010)CrossRef
70.
Zurück zum Zitat D. Sternad, M.T. Turvey, E.L. Saltzman, Dynamics of 1:2 coordination in rhythmic interlimb movement: I. Generalizing relative phase. J. Motor Behavior 31, 207–223 (1999)CrossRef D. Sternad, M.T. Turvey, E.L. Saltzman, Dynamics of 1:2 coordination in rhythmic interlimb movement: I. Generalizing relative phase. J. Motor Behavior 31, 207–223 (1999)CrossRef
71.
Zurück zum Zitat D. Sternad, M.T. Turvey, R.C. Schmidt, Average phase difference theory and 1:1 phase entrainment in interlimb coordination. Biol. Cybern. 67, 223–231 (1992)CrossRef D. Sternad, M.T. Turvey, R.C. Schmidt, Average phase difference theory and 1:1 phase entrainment in interlimb coordination. Biol. Cybern. 67, 223–231 (1992)CrossRef
72.
Zurück zum Zitat S. Sternberg, R. Knoll, P. Zukovsky, Timing by skilled musicians, in The Psychology of Music (Academic Press, New York, 1982), pp. 181–239 S. Sternberg, R. Knoll, P. Zukovsky, Timing by skilled musicians, in The Psychology of Music (Academic Press, New York, 1982), pp. 181–239
73.
Zurück zum Zitat E. Todorov, Optimality principles in sensorimotor control. Nature Neurosci. 7, 907–915 (2004)CrossRef E. Todorov, Optimality principles in sensorimotor control. Nature Neurosci. 7, 907–915 (2004)CrossRef
74.
Zurück zum Zitat E. Todorov, M.I. Jordan, Optimal feedback control as a theory of motor coordination. Nature Neurosci. 5, 1226–1235 (2002)CrossRef E. Todorov, M.I. Jordan, Optimal feedback control as a theory of motor coordination. Nature Neurosci. 5, 1226–1235 (2002)CrossRef
75.
Zurück zum Zitat N.B. Tufillaro, T. Abbott, J. Reilly, An Experimental Approach to Nonlinear Dynamics and Chaos (Redwood City, Addison-Wesley, 1992)MATH N.B. Tufillaro, T. Abbott, J. Reilly, An Experimental Approach to Nonlinear Dynamics and Chaos (Redwood City, Addison-Wesley, 1992)MATH
76.
Zurück zum Zitat R. van der Linde, P. Lammertse, HapticMaster - a generic force controlled robot for human interaction. Ind. Robot - An Int. J. 30, 515–524 (2003)CrossRef R. van der Linde, P. Lammertse, HapticMaster - a generic force controlled robot for human interaction. Ind. Robot - An Int. J. 30, 515–524 (2003)CrossRef
77.
Zurück zum Zitat R.P.R.D. van der Wel, D. Sternad, D.A. Rosenbaum, Moving the arm at different rates: Slow movements are avoided. J. Motor Behavior 1, 29–36 (2010) R.P.R.D. van der Wel, D. Sternad, D.A. Rosenbaum, Moving the arm at different rates: Slow movements are avoided. J. Motor Behavior 1, 29–36 (2010)
78.
Zurück zum Zitat R. van Ham, T. Sugar, B. Vanderborght, K. Hollander, D. Lefeber, Compliant actuator design. IEEE Robtoics Autom. Mag. 9, 81–94 (2009)CrossRef R. van Ham, T. Sugar, B. Vanderborght, K. Hollander, D. Lefeber, Compliant actuator design. IEEE Robtoics Autom. Mag. 9, 81–94 (2009)CrossRef
79.
Zurück zum Zitat K. Wei, T.M.H. Dijkstra, D. Sternad, Passive stability and active control in a rhythmic task. J. Neurophysiol. 98, 2633–2646 (2007)CrossRef K. Wei, T.M.H. Dijkstra, D. Sternad, Passive stability and active control in a rhythmic task. J. Neurophysiol. 98, 2633–2646 (2007)CrossRef
80.
Zurück zum Zitat K. Wei, K.Körding, Uncertainty of feedback and state estimation determines the speed of motor adaptation. Front. Comput. Neurosci. 4, 11 (2010) K. Wei, K.Körding, Uncertainty of feedback and state estimation determines the speed of motor adaptation. Front. Comput. Neurosci. 4, 11 (2010)
81.
Zurück zum Zitat A.M. Wing, A.B. Kristofferson, The timing of interresponse intervals. Percept. Psychophys. 1, 455–460 (1973)CrossRef A.M. Wing, A.B. Kristofferson, The timing of interresponse intervals. Percept. Psychophys. 1, 455–460 (1973)CrossRef
82.
Zurück zum Zitat V. Zatsiorsky, R. Gregory, M. Latash, Force and torque production in static multifinger prehension: biomechanics and control. I. Biomech. Biol. Cybern. 87, 50–57 (2002)CrossRefMATH V. Zatsiorsky, R. Gregory, M. Latash, Force and torque production in static multifinger prehension: biomechanics and control. I. Biomech. Biol. Cybern. 87, 50–57 (2002)CrossRefMATH
Metadaten
Titel
Human Control of Interactions with Objects – Variability, Stability and Predictability
verfasst von
Dagmar Sternad
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-51547-2_13

Neuer Inhalt