Skip to main content

03.01.2025 | Connected Automated Vehicles and ITS, Vision and Sensors

Human–Machine Cooperative Vehicle Control Based on Driving Intention and Risk Avoidance

verfasst von: Yong Guan, Ning Li, Pengzhan Chen, Yongchao Zhang

Erschienen in: International Journal of Automotive Technology

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study explores human–machine collaborative planning and tracking control methods for autonomous vehicles. The proposed approach is based on an improved Fastformer GAN (FGAN) algorithm and a risk assessment mechanism for driver behavior. Initially, a novel trajectory prediction method that integrates the Fourier Attention Fastformer (FAF) and GAN models is proposed. This method is used for predicting driver behavior and adjusting trajectories based on driver intent, correcting any improper actions by the driver. Subsequently, a risk assessment system, which couples Artificial Potential Field (APF) and Dynamic Potential Field (DPF) models, is introduced to evaluate the risk levels of driver behavior. Adaptive activation of human–machine collaboration is based on the assessed driving risks. Simulation results indicate that the proposed FGAN algorithm significantly improves trajectory prediction accuracy on public datasets. Furthermore, the proposed human–machine collaboration method ensures both vehicle safety and stability while greatly reducing human–machine conflicts in real-time applications, demonstrating its feasibility and effectiveness.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
Zurück zum Zitat Alahi A, Goel K, Ramanathan V, et al. Social lstm: Human trajectory prediction in crowded spaces[C]. Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 961–971. Alahi A, Goel K, Ramanathan V, et al. Social lstm: Human trajectory prediction in crowded spaces[C]. Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 961–971.
Zurück zum Zitat Deo N, Trivedi M M. Convolutional social pooling for vehicle trajectory prediction[C]. Proceedings of the IEEE conference on computer vision and pattern recognition workshops. 2018: 1468–1476. Deo N, Trivedi M M. Convolutional social pooling for vehicle trajectory prediction[C]. Proceedings of the IEEE conference on computer vision and pattern recognition workshops. 2018: 1468–1476.
Zurück zum Zitat Elnagar A. Prediction of moving objects in dynamic environments using Kalman filters[C]. Proceedings 2001 IEEE International Symposium on Computational Intelligence in Robotics and Automation (Cat. No. 01EX515). IEEE, 2001: 414-419. Elnagar A. Prediction of moving objects in dynamic environments using Kalman filters[C]. Proceedings 2001 IEEE International Symposium on Computational Intelligence in Robotics and Automation (Cat. No. 01EX515). IEEE, 2001: 414-419.
Zurück zum Zitat Fang Z, Wang J, Wang Z, et al. (2024) Human–machine shared control for path following considering driver fatigue characteristics[J]. IEEE Transactions on Intelligent Transportation Systems, 25(7), 7250–7264.MATHCrossRef Fang Z, Wang J, Wang Z, et al. (2024) Human–machine shared control for path following considering driver fatigue characteristics[J]. IEEE Transactions on Intelligent Transportation Systems, 25(7), 7250–7264.MATHCrossRef
Zurück zum Zitat Flemisch, F., Abbink, D. A., Itoh, M., et al. (2019). Joining the blunt and the pointy end of the spear: Towards a common framework of joint action, human–machine cooperation, cooperative guidance and control, shared, traded and supervisory control. Cognition, Technology & Work, 21, 555–568.CrossRef Flemisch, F., Abbink, D. A., Itoh, M., et al. (2019). Joining the blunt and the pointy end of the spear: Towards a common framework of joint action, human–machine cooperation, cooperative guidance and control, shared, traded and supervisory control. Cognition, Technology & Work, 21, 555–568.CrossRef
Zurück zum Zitat Fu, K., Li, H., & Shi, X. (2024). An encoder–decoder architecture with Fourier attention for chaotic time series multi-step prediction. Applied Soft Computing, 156, 111409.MATHCrossRef Fu, K., Li, H., & Shi, X. (2024). An encoder–decoder architecture with Fourier attention for chaotic time series multi-step prediction. Applied Soft Computing, 156, 111409.MATHCrossRef
Zurück zum Zitat Gao, Z., Bao, M., Gao, F., et al. (2023). Probabilistic multi-modal expected trajectory prediction based on LSTM for autonomous driving. Proc Inst Mech Eng, Part D: J Automobile Eng, 238, 0954.MATH Gao, Z., Bao, M., Gao, F., et al. (2023). Probabilistic multi-modal expected trajectory prediction based on LSTM for autonomous driving. Proc Inst Mech Eng, Part D: J Automobile Eng, 238, 0954.MATH
Zurück zum Zitat Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[J]. Advances in neural information processing systems, 2014, 27. Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[J]. Advances in neural information processing systems, 2014, 27.
Zurück zum Zitat Guan, Y., Li, N., Chen, P., et al. (2024). Research on path tracking control based on optimal look-ahead points. International Journal of Automotive Technology, 25, 1355–1374.MATHCrossRef Guan, Y., Li, N., Chen, P., et al. (2024). Research on path tracking control based on optimal look-ahead points. International Journal of Automotive Technology, 25, 1355–1374.MATHCrossRef
Zurück zum Zitat Guo, H., Song, L., Liu, J., et al. (2018). Hazard-evaluation-oriented moving horizon parallel steering control for driver-automation collaboration during automated driving. IEEE/CAA Journal of Automatica Sinica, 5(6), 1062–1073.MathSciNetMATHCrossRef Guo, H., Song, L., Liu, J., et al. (2018). Hazard-evaluation-oriented moving horizon parallel steering control for driver-automation collaboration during automated driving. IEEE/CAA Journal of Automatica Sinica, 5(6), 1062–1073.MathSciNetMATHCrossRef
Zurück zum Zitat Guo, H., Meng, Q., Cao, D., et al. (2022). Vehicle trajectory prediction method coupled with ego vehicle motion trend under dual attention mechanism. IEEE Transactions on Instrumentation and Measurement, 71, 1–16.MATH Guo, H., Meng, Q., Cao, D., et al. (2022). Vehicle trajectory prediction method coupled with ego vehicle motion trend under dual attention mechanism. IEEE Transactions on Instrumentation and Measurement, 71, 1–16.MATH
Zurück zum Zitat Guo, W., Song, X., Cao, H., et al. (2023). Human-centered driving authority allocation for driver-automation shared control: A two-layer game-theoretic approach. Physica a: Statistical Mechanics and Its Applications, 626, 129059.MATHCrossRef Guo, W., Song, X., Cao, H., et al. (2023). Human-centered driving authority allocation for driver-automation shared control: A two-layer game-theoretic approach. Physica a: Statistical Mechanics and Its Applications, 626, 129059.MATHCrossRef
Zurück zum Zitat Gupta A, Johnson J, Fei-Fei L, et al. Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks [C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018. Gupta A, Johnson J, Fei-Fei L, et al. Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks [C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018.
Zurück zum Zitat Han, J., Zhao, J., Zhu, B., et al. (2021). Adaptive steering torque coupling framework considering conflict resolution for human-machine shared driving. IEEE Transactions on Intelligent Transportation Systems, 23(8), 10983–10995.MATHCrossRef Han, J., Zhao, J., Zhu, B., et al. (2021). Adaptive steering torque coupling framework considering conflict resolution for human-machine shared driving. IEEE Transactions on Intelligent Transportation Systems, 23(8), 10983–10995.MATHCrossRef
Zurück zum Zitat Hang, P., Lv, C., Xing, Y., et al. (2020). Human-like decision making for autonomous driving: A noncooperative game theoretic approach[J]. IEEE Transactions on Intelligent Transportation Systems, 22(4), 2076–2087.MATHCrossRef Hang, P., Lv, C., Xing, Y., et al. (2020). Human-like decision making for autonomous driving: A noncooperative game theoretic approach[J]. IEEE Transactions on Intelligent Transportation Systems, 22(4), 2076–2087.MATHCrossRef
Zurück zum Zitat Hu, Z., Xing, Y., Lv, C., et al. (2021). Deep convolutional neural network-based Bernoulli heatmap for head pose estimation[J]. Neurocomputing, 436, 198–209.MATHCrossRef Hu, Z., Xing, Y., Lv, C., et al. (2021). Deep convolutional neural network-based Bernoulli heatmap for head pose estimation[J]. Neurocomputing, 436, 198–209.MATHCrossRef
Zurück zum Zitat Huang, C., Hang, P., Hu, Z., et al. (2021a). Collision-probability-aware human-machine cooperative planning for safe automated driving[J]. IEEE Transactions on Vehicular Technology, 70(10), 9752–9763.MATHCrossRef Huang, C., Hang, P., Hu, Z., et al. (2021a). Collision-probability-aware human-machine cooperative planning for safe automated driving[J]. IEEE Transactions on Vehicular Technology, 70(10), 9752–9763.MATHCrossRef
Zurück zum Zitat Huang, C., Huang, H., Zhang, J., et al. (2021b). Human-machine cooperative trajectory planning and tracking for safe automated driving[J]. IEEE Transactions on Intelligent Transportation Systems, 23(8), 12050–12063.MATHCrossRef Huang, C., Huang, H., Zhang, J., et al. (2021b). Human-machine cooperative trajectory planning and tracking for safe automated driving[J]. IEEE Transactions on Intelligent Transportation Systems, 23(8), 12050–12063.MATHCrossRef
Zurück zum Zitat Huang C, Hang P, Wu J, et al. Reference-free human-automation shared control for obstacle avoidance of automated vehicles[C]//2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2020: 4398–4403. Huang C, Hang P, Wu J, et al. Reference-free human-automation shared control for obstacle avoidance of automated vehicles[C]//2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2020: 4398–4403.
Zurück zum Zitat Huo J, Wang L, Wen X, et al. (2023). Safety-Aware Vehicle Trajectory Prediction With Spatio-Temporal Attentional GAN in Hybrid Transportation System. IEEE Transactions on Instrumentation and Measurement, 72, 1–13. Huo J, Wang L, Wen X, et al. (2023). Safety-Aware Vehicle Trajectory Prediction With Spatio-Temporal Attentional GAN in Hybrid Transportation System. IEEE Transactions on Instrumentation and Measurement, 72, 1–13.
Zurück zum Zitat Ji, X., Fei, C., He, X., et al. (2019). Intention recognition and trajectory prediction for vehicles using LSTM network. China Journal of Highway and Transport, 32(6), 34–43.MATH Ji, X., Fei, C., He, X., et al. (2019). Intention recognition and trajectory prediction for vehicles using LSTM network. China Journal of Highway and Transport, 32(6), 34–43.MATH
Zurück zum Zitat Jia, C., & Ma, J. (2023). Conditional temporal GAN for intent-aware vessel trajectory prediction in the precautionary area. Engineering Applications of Artificial Intelligence, 126, 106776.MATHCrossRef Jia, C., & Ma, J. (2023). Conditional temporal GAN for intent-aware vessel trajectory prediction in the precautionary area. Engineering Applications of Artificial Intelligence, 126, 106776.MATHCrossRef
Zurück zum Zitat Jin, L., Liu, X., Wang, Y., et al. (2024). Multi-modality trajectory predic-tion with the dynamic spatial interaction among vehicles un-der connected vehicle environment. Scientific Reports, 14(1), 2873.MATHCrossRef Jin, L., Liu, X., Wang, Y., et al. (2024). Multi-modality trajectory predic-tion with the dynamic spatial interaction among vehicles un-der connected vehicle environment. Scientific Reports, 14(1), 2873.MATHCrossRef
Zurück zum Zitat Khakzar, M., Rakotonirainy, A., Bond, A., et al. (2020). A dual learning model for vehicle trajectory prediction. IEEE Access, 8, 21897–21908.MATHCrossRef Khakzar, M., Rakotonirainy, A., Bond, A., et al. (2020). A dual learning model for vehicle trajectory prediction. IEEE Access, 8, 21897–21908.MATHCrossRef
Zurück zum Zitat Kothari, P., & Alahi, A. (2023). Safety-compliant generative adversarial networks for human trajectory forecasting. IEEE Transactions on Intelligent Transportation Systems, 24(4), 4251–4261.MATHCrossRef Kothari, P., & Alahi, A. (2023). Safety-compliant generative adversarial networks for human trajectory forecasting. IEEE Transactions on Intelligent Transportation Systems, 24(4), 4251–4261.MATHCrossRef
Zurück zum Zitat Krajewski R, Bock J, Kloeker L, et al. The highd dataset: A drone dataset of naturalistic vehicle trajectories on german highways for validation of highly automated driving systems[C]//2018 21st international conference on intelligent transportation systems (ITSC). IEEE, 2018: 2118–2125. Krajewski R, Bock J, Kloeker L, et al. The highd dataset: A drone dataset of naturalistic vehicle trajectories on german highways for validation of highly automated driving systems[C]//2018 21st international conference on intelligent transportation systems (ITSC). IEEE, 2018: 2118–2125.
Zurück zum Zitat Li, M., Cao, H., Song, X., et al. (2018). Shared control driver assistance system based on driving intention and situation assessment[J]. IEEE Transactions on Industrial Informatics, 14(11), 4982–4994.MATHCrossRef Li, M., Cao, H., Song, X., et al. (2018). Shared control driver assistance system based on driving intention and situation assessment[J]. IEEE Transactions on Industrial Informatics, 14(11), 4982–4994.MATHCrossRef
Zurück zum Zitat Li, L., Gan, J., Ji, X., et al. (2020a). Dynamic driving risk potential field model under the connected and automated vehicles environment and its application in car-following modeling. IEEE Transactions on Intelligent Transportation Systems, 23(1), 122–141.MATHCrossRef Li, L., Gan, J., Ji, X., et al. (2020a). Dynamic driving risk potential field model under the connected and automated vehicles environment and its application in car-following modeling. IEEE Transactions on Intelligent Transportation Systems, 23(1), 122–141.MATHCrossRef
Zurück zum Zitat Li, M., Cao, H., Li, G., et al. (2020b). A two-layer potential-field-driven model predictive shared control towards driver-automation cooperation[J]. IEEE Transactions on Intelligent Transportation Systems, 23(5), 4415–4431.MATHCrossRef Li, M., Cao, H., Li, G., et al. (2020b). A two-layer potential-field-driven model predictive shared control towards driver-automation cooperation[J]. IEEE Transactions on Intelligent Transportation Systems, 23(5), 4415–4431.MATHCrossRef
Zurück zum Zitat Li, W., Li, Q., Li, S. E., et al. (2022). Indirect shared control through non-zero sum differential game for cooperative automated driving[J]. IEEE Transactions on Intelligent Transportation Systems, 23(9), 15980–15992.MATHCrossRef Li, W., Li, Q., Li, S. E., et al. (2022). Indirect shared control through non-zero sum differential game for cooperative automated driving[J]. IEEE Transactions on Intelligent Transportation Systems, 23(9), 15980–15992.MATHCrossRef
Zurück zum Zitat Li, C., Liu, Z., Lin, S., et al. (2024). Intention-convolution and hybrid-attention network for vehicle trajectory prediction. Expert Systems with Applications, 236, 121412.MATHCrossRef Li, C., Liu, Z., Lin, S., et al. (2024). Intention-convolution and hybrid-attention network for vehicle trajectory prediction. Expert Systems with Applications, 236, 121412.MATHCrossRef
Zurück zum Zitat Luo, R., Weng, Y., Wang, Y., et al. (2021). A workload adaptive haptic shared control scheme for semi-autonomous driving. Accident Analysis & Prevention, 152, 105968.CrossRef Luo, R., Weng, Y., Wang, Y., et al. (2021). A workload adaptive haptic shared control scheme for semi-autonomous driving. Accident Analysis & Prevention, 152, 105968.CrossRef
Zurück zum Zitat Lv, C., Li, Y., Xing, Y., et al. (2021). Human-machine collaboration for automated driving using an intelligent two-phase haptic interface. Advanced Intelligent Systems, 3(4), 2000229.MATHCrossRef Lv, C., Li, Y., Xing, Y., et al. (2021). Human-machine collaboration for automated driving using an intelligent two-phase haptic interface. Advanced Intelligent Systems, 3(4), 2000229.MATHCrossRef
Zurück zum Zitat Ma, B., Liu, Y., Na, X., et al. (2019). A shared steering controller design based on steer-by-wire system considering human-machine goal consistency. Journal of the Franklin Institute, 356(8), 4397–4419.MathSciNetMATHCrossRef Ma, B., Liu, Y., Na, X., et al. (2019). A shared steering controller design based on steer-by-wire system considering human-machine goal consistency. Journal of the Franklin Institute, 356(8), 4397–4419.MathSciNetMATHCrossRef
Zurück zum Zitat Min, K., Kim, D., Park, J., et al. (2019). RNN-based path prediction of obstacle vehicles with deep ensemble[J]. IEEE Transactions on Vehicular Technology, 68(10), 10252–10256.MATHCrossRef Min, K., Kim, D., Park, J., et al. (2019). RNN-based path prediction of obstacle vehicles with deep ensemble[J]. IEEE Transactions on Vehicular Technology, 68(10), 10252–10256.MATHCrossRef
Zurück zum Zitat Passenberg, C., Glaser, A., & Peer, A. (2013). Exploring the design space of haptic assistants: The assistance policy module. IEEE Transactions on Haptics, 6(4), 440–452.CrossRef Passenberg, C., Glaser, A., & Peer, A. (2013). Exploring the design space of haptic assistants: The assistance policy module. IEEE Transactions on Haptics, 6(4), 440–452.CrossRef
Zurück zum Zitat Rath, J. J., Senouth, C., & Popieul, J. C. (2019). Personalised lane keeping assist strategy: Adaptation to driving style. IET Control Theory & Applications, 13(1), 106–115.CrossRef Rath, J. J., Senouth, C., & Popieul, J. C. (2019). Personalised lane keeping assist strategy: Adaptation to driving style. IET Control Theory & Applications, 13(1), 106–115.CrossRef
Zurück zum Zitat Rossi, L., Ajmar, A., Paolanti, M., et al. (2021). Vehicle trajectory prediction and generation using LSTM models and GANs. PLoS ONE, 16(7), e0253868.CrossRef Rossi, L., Ajmar, A., Paolanti, M., et al. (2021). Vehicle trajectory prediction and generation using LSTM models and GANs. PLoS ONE, 16(7), e0253868.CrossRef
Zurück zum Zitat Schneider, N., & Gavrila, D. M. (2013). Pedestrian path prediction with recursive bayesian filters: A comparative study. German conference on pattern recognition (pp. 174–183). Berlin, Heidelberg: Springer Berlin Heidelberg.MATHCrossRef Schneider, N., & Gavrila, D. M. (2013). Pedestrian path prediction with recursive bayesian filters: A comparative study. German conference on pattern recognition (pp. 174–183). Berlin, Heidelberg: Springer Berlin Heidelberg.MATHCrossRef
Zurück zum Zitat Schwarting, W., Alonso-Mora, J., Paull, L., et al. (2017). Safe nonlinear trajectory generation for parallel autonomy with a dynamic vehicle model. IEEE Transactions on Intelligent Transportation Systems, 19(9), 2994–3008.MATHCrossRef Schwarting, W., Alonso-Mora, J., Paull, L., et al. (2017). Safe nonlinear trajectory generation for parallel autonomy with a dynamic vehicle model. IEEE Transactions on Intelligent Transportation Systems, 19(9), 2994–3008.MATHCrossRef
Zurück zum Zitat SIMulation G. Us highway 101 dataset[J]. 2007. SIMulation G. Us highway 101 dataset[J]. 2007.
Zurück zum Zitat Snider J M. Automatic steering methods for autonomous automobile path tracking. Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RITR-09–08, 2009. Snider J M. Automatic steering methods for autonomous automobile path tracking. Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RITR-09–08, 2009.
Zurück zum Zitat Song, H., Ding, W., Chen, Y., et al. (2020). Pip: Planning-informed trajectory prediction for autonomous driving. Computer Vision ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Procceedings, Part XXI 16 (pp. 598–614). Springer International Publishing.CrossRef Song, H., Ding, W., Chen, Y., et al. (2020). Pip: Planning-informed trajectory prediction for autonomous driving. Computer Vision ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Procceedings, Part XXI 16 (pp. 598–614). Springer International Publishing.CrossRef
Zurück zum Zitat Su, L., Xiong, L., & Yang, J. (2023). Multi-Attn BLS: Multi-head attention mechanism with broad learning system for chaotic time series prediction. Applied Soft Computing, 132, 109831.MATHCrossRef Su, L., Xiong, L., & Yang, J. (2023). Multi-Attn BLS: Multi-head attention mechanism with broad learning system for chaotic time series prediction. Applied Soft Computing, 132, 109831.MATHCrossRef
Zurück zum Zitat Tang, F., Gao, F., & Wang, Z. (2020a). Driving capability-based transition strategy for cooperative driving: From manual to automatic. IEEE Access, 8, 139013–139022.CrossRef Tang, F., Gao, F., & Wang, Z. (2020a). Driving capability-based transition strategy for cooperative driving: From manual to automatic. IEEE Access, 8, 139013–139022.CrossRef
Zurück zum Zitat Tolstikhin, I. O., Houlsby, N., Kolesnikov, A., et al. (2021). Mlp-mixer: An all-mlp architecture for vision. Advances in Neural Information Processing Systems, 34, 24261–24272.MATH Tolstikhin, I. O., Houlsby, N., Kolesnikov, A., et al. (2021). Mlp-mixer: An all-mlp architecture for vision. Advances in Neural Information Processing Systems, 34, 24261–24272.MATH
Zurück zum Zitat Tran Q, Firl J. Online maneuver recognition and multimodal trajectory prediction for intersection assistance using non-parametric regression. 2014 ieee intelligent vehicles symposium proceedings. IEEE, 2014: 918–923. Tran Q, Firl J. Online maneuver recognition and multimodal trajectory prediction for intersection assistance using non-parametric regression. 2014 ieee intelligent vehicles symposium proceedings. IEEE, 2014: 918–923.
Zurück zum Zitat Vasconez, J. P., Carvajal, D., & Cheein, F. A. (2019). On the design of a human–robot interaction strategy for commercial vehicle driving based on human cognitive parameters. Advances in Mechanical Engineering, 11(7), 1687814019862715.MATHCrossRef Vasconez, J. P., Carvajal, D., & Cheein, F. A. (2019). On the design of a human–robot interaction strategy for commercial vehicle driving based on human cognitive parameters. Advances in Mechanical Engineering, 11(7), 1687814019862715.MATHCrossRef
Zurück zum Zitat Wang, J., Wu, J., & Li, Y. (2015). The driving safety field based on driver–vehicle–road interactions. IEEE Transactions on Intelligent Transportation Systems, 16(4), 2203–2214.MATHCrossRef Wang, J., Wu, J., & Li, Y. (2015). The driving safety field based on driver–vehicle–road interactions. IEEE Transactions on Intelligent Transportation Systems, 16(4), 2203–2214.MATHCrossRef
Zurück zum Zitat Wang, H., Wang, Q., Chen, W., et al. (2020a). Multi-mode human–machine cooperative control for lane departure prevention based on steering assistance and differential braking. IET Intelligent Transport Systems, 14(6), 578–588.MATHCrossRef Wang, H., Wang, Q., Chen, W., et al. (2020a). Multi-mode human–machine cooperative control for lane departure prevention based on steering assistance and differential braking. IET Intelligent Transport Systems, 14(6), 578–588.MATHCrossRef
Zurück zum Zitat Wang, Y., Zhao, S., Zhang, R., et al. (2020b). Multi-vehicle collaborative learning for trajectory prediction with spatio-temporal tensor fusion. IEEE Transactions on Intelligent Transportation Systems, 23(1), 236–248.MATHCrossRef Wang, Y., Zhao, S., Zhang, R., et al. (2020b). Multi-vehicle collaborative learning for trajectory prediction with spatio-temporal tensor fusion. IEEE Transactions on Intelligent Transportation Systems, 23(1), 236–248.MATHCrossRef
Zurück zum Zitat Wu, Y., Wei, H., Chen, X., et al. (2020). Adaptive authority allocation of human-automation shared control for autonomous vehicle. International Journal of Automotive Technology, 21(3), 541–553.MATHCrossRef Wu, Y., Wei, H., Chen, X., et al. (2020). Adaptive authority allocation of human-automation shared control for autonomous vehicle. International Journal of Automotive Technology, 21(3), 541–553.MATHCrossRef
Zurück zum Zitat Xie J, Zhang S, Xia B, et al. Pedestrian Trajectory Prediction Based on Social Interactions Learning With Random Weights. IEEE Transactions on Multimedia, 2024. Xie J, Zhang S, Xia B, et al. Pedestrian Trajectory Prediction Based on Social Interactions Learning With Random Weights. IEEE Transactions on Multimedia, 2024.
Zurück zum Zitat Yang, K., Liu, Y., Na, X., et al. (2019). Preview-scheduled steering assistance control for co-piloting vehicle: A human-like methodology. Vehicle System Dynamics, 58, 518–544.MATHCrossRef Yang, K., Liu, Y., Na, X., et al. (2019). Preview-scheduled steering assistance control for co-piloting vehicle: A human-like methodology. Vehicle System Dynamics, 58, 518–544.MATHCrossRef
Zurück zum Zitat Yue, M., Fang, C., Zhang, H., et al. (2021). Adaptive authority allocation-based driver-automation shared control for autonomous vehicles. Accident Analysis & Prevention, 160, 106301.MATHCrossRef Yue, M., Fang, C., Zhang, H., et al. (2021). Adaptive authority allocation-based driver-automation shared control for autonomous vehicles. Accident Analysis & Prevention, 160, 106301.MATHCrossRef
Zurück zum Zitat Zhang, W., Zhao, Y., Zhang, X., et al. (2019). Shared control for lane keeping assistance system based on multiple-phase handling inverse dynamics. Control Engineering Practice, 93, 104182.MATHCrossRef Zhang, W., Zhao, Y., Zhang, X., et al. (2019). Shared control for lane keeping assistance system based on multiple-phase handling inverse dynamics. Control Engineering Practice, 93, 104182.MATHCrossRef
Zurück zum Zitat Zhang, Z., Zhang, H., & Zhao, W. (2020). A human-vehicle game stability control strategy considering drivers’ steering characteristics. IEEE Transactions on Intelligent Transportation Systems, 22(11), 7306–7316.MATHCrossRef Zhang, Z., Zhang, H., & Zhao, W. (2020). A human-vehicle game stability control strategy considering drivers’ steering characteristics. IEEE Transactions on Intelligent Transportation Systems, 22(11), 7306–7316.MATHCrossRef
Zurück zum Zitat Zhang X, Xu Q, Gong X, et al. (2024) Shared control for human–machine co-driving vehicles based on constraint-following approach[J]. Journal of Vibration and Control, 30(21–22), 5132–5148.MathSciNetMATHCrossRef Zhang X, Xu Q, Gong X, et al. (2024) Shared control for human–machine co-driving vehicles based on constraint-following approach[J]. Journal of Vibration and Control, 30(21–22), 5132–5148.MathSciNetMATHCrossRef
Zurück zum Zitat Zhao T, Xu Y, Monfort M, et al. Multi-agent tensor fusion for contextual trajectory prediction. Proceedings of the IEEE/CVF conference on computer vision and pattern recog-nition. 2019: 12126–12134. Zhao T, Xu Y, Monfort M, et al. Multi-agent tensor fusion for contextual trajectory prediction. Proceedings of the IEEE/CVF conference on computer vision and pattern recog-nition. 2019: 12126–12134.
Zurück zum Zitat Zhou, Z., Huang, G., Su, Z., et al. (2022). Dynamic attention-based CVAE-GAN for pedestrian trajectory prediction. IEEE Robotics and Automation Letters, 8(2), 704–711.MATHCrossRef Zhou, Z., Huang, G., Su, Z., et al. (2022). Dynamic attention-based CVAE-GAN for pedestrian trajectory prediction. IEEE Robotics and Automation Letters, 8(2), 704–711.MATHCrossRef
Zurück zum Zitat Zhu Z, Schmerling E, Pavone M. A convex optimization approach to smooth trajectories for motion planning with car-like robots. 2015 54th IEEE conference on decision and control (CDC). IEEE, 2015: 835–842. Zhu Z, Schmerling E, Pavone M. A convex optimization approach to smooth trajectories for motion planning with car-like robots. 2015 54th IEEE conference on decision and control (CDC). IEEE, 2015: 835–842.
Metadaten
Titel
Human–Machine Cooperative Vehicle Control Based on Driving Intention and Risk Avoidance
verfasst von
Yong Guan
Ning Li
Pengzhan Chen
Yongchao Zhang
Publikationsdatum
03.01.2025
Verlag
The Korean Society of Automotive Engineers
Erschienen in
International Journal of Automotive Technology
Print ISSN: 1229-9138
Elektronische ISSN: 1976-3832
DOI
https://doi.org/10.1007/s12239-024-00200-w