Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 23/2019

05.11.2019

Humic acid assisted chemical synthesis of silver nanoparticles for inkjet printing of flexible circuits

verfasst von: Yueyue Hao, Zesheng Xu, Jian Gao, Kaiyun Wu, Jingyu Liu, Jing Luo

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 23/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, humic acid (HA) was used as stabilizer to prepare silver nanoparticles (Ag NPs) by chemically reducing silver salts in water phase, which were employed to produce Ag NPs inks for inkjet printing conductive silver patterns. The obtained silver nanoparticles stabilized with HA (HA-Ag NPs) were all in spherical shape and the particle size was about 7–12 nm. By re-dispersing HA-Ag NPs in ultrapure water, conductive ink with excellent storage stability was prepared, which can be placed at room temperature for 30 days without any precipitation. The as-prepared HA-Ag NPs conductive ink was printed onto photopapers to fabricate conductive silver patterns with a domestic inkjet printer. The resistivity of the printed pattern could reach 135 μΩ cm after printed for 40 layers and sintered at 180 °C for 60 min. In addition, the printed conductive silver patterns could be integrated into a LED device or alarm apparatus, indicating it could be widely used in flexible printing electronics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat K. Woo, D. Kim, J.S. Kim et al., Inkjet printing of Cu-Ag-based highly conductive tracks on a transparent substrate. Langmuir 25(1), 429–433 (2009) K. Woo, D. Kim, J.S. Kim et al., Inkjet printing of Cu-Ag-based highly conductive tracks on a transparent substrate. Langmuir 25(1), 429–433 (2009)
2.
Zurück zum Zitat W. Wu, Stretchable electronics: Functional materials, fabrication strategies and applications. Sci. Technol. Adv. Mater. 20(1), 187–224 (2019) W. Wu, Stretchable electronics: Functional materials, fabrication strategies and applications. Sci. Technol. Adv. Mater. 20(1), 187–224 (2019)
3.
Zurück zum Zitat A. Kamyshny, M. Ben-Moshe, S. Aviezer, S. Magdassi, Ink-jet printing of metallic nanoparticles and microemulsions. Macromol. Rapid Commun. 26(4), 281–288 (2005) A. Kamyshny, M. Ben-Moshe, S. Aviezer, S. Magdassi, Ink-jet printing of metallic nanoparticles and microemulsions. Macromol. Rapid Commun. 26(4), 281–288 (2005)
4.
Zurück zum Zitat N.C. Raut, K. Al-Shamery, Inkjet printing metals on flexible materials for plastic and paper electronics. J. Mater. Chem. C 6(7), 1618–1641 (2018) N.C. Raut, K. Al-Shamery, Inkjet printing metals on flexible materials for plastic and paper electronics. J. Mater. Chem. C 6(7), 1618–1641 (2018)
5.
Zurück zum Zitat W. Wu, Inorganic nanomaterials for printed electronics: a review. Nanoscale 9(22), 7342–7372 (2017) W. Wu, Inorganic nanomaterials for printed electronics: a review. Nanoscale 9(22), 7342–7372 (2017)
6.
Zurück zum Zitat D. Zhu, M. Wu, Highly conductive nano-silver circuits by inkjet printing. J. Electron. Mater. 47(9), 5133–5147 (2018) D. Zhu, M. Wu, Highly conductive nano-silver circuits by inkjet printing. J. Electron. Mater. 47(9), 5133–5147 (2018)
7.
Zurück zum Zitat Y.Y. Hao, N. Zhang, J. Luo, X.Y. Liu, Tannic acid stabilized antioxidation copper nanoparticles in aqueous solution for application in conductive ink. J. Mater. Sci. 29(24), 20603–20606 (2018) Y.Y. Hao, N. Zhang, J. Luo, X.Y. Liu, Tannic acid stabilized antioxidation copper nanoparticles in aqueous solution for application in conductive ink. J. Mater. Sci. 29(24), 20603–20606 (2018)
8.
Zurück zum Zitat P.S. Karthik, S. Singh, P, Conductive silver inks and their applications in printed and flexible electronics. RSC Adv. 5(95), 77760–77790 (2015) P.S. Karthik, S. Singh, P, Conductive silver inks and their applications in printed and flexible electronics. RSC Adv. 5(95), 77760–77790 (2015)
9.
Zurück zum Zitat K. Jaakkola, H. Sandberg, M. Lahti, V. Ermolov, Near-Field UHF RFID transponder with a screen-printed graphene antenna. IEEE Trans. Comput. Pack. Manuf. 9(4), 616–623 (2019) K. Jaakkola, H. Sandberg, M. Lahti, V. Ermolov, Near-Field UHF RFID transponder with a screen-printed graphene antenna. IEEE Trans. Comput. Pack. Manuf. 9(4), 616–623 (2019)
10.
Zurück zum Zitat W.F. Shen, X.P. Zhang, Q.J. Huang, Q.S. Xu, W.J. Song, Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity. Nanoscale 6(3), 1622–1628 (2014) W.F. Shen, X.P. Zhang, Q.J. Huang, Q.S. Xu, W.J. Song, Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity. Nanoscale 6(3), 1622–1628 (2014)
11.
Zurück zum Zitat S. Milardovic, I. Ivanisevic, A. Rogina, P. Kassal, Synthesis and electrochemical characterization of AgNP ink suitable for inkjet printing. Int. J. Electrochem. Sci. 13(11), 11136–11149 (2018) S. Milardovic, I. Ivanisevic, A. Rogina, P. Kassal, Synthesis and electrochemical characterization of AgNP ink suitable for inkjet printing. Int. J. Electrochem. Sci. 13(11), 11136–11149 (2018)
12.
Zurück zum Zitat S.A. Patil, C.H. Ryu, H.S. Kim, Synthesis and characterization of copper nanoparticles (Cu-Nps) using rongalite as reducing agent and photonic sintering of Cu-Nps ink for printed electronics. Int. J. Precis. Eng. Manuf. 5(2), 239–245 (2018) S.A. Patil, C.H. Ryu, H.S. Kim, Synthesis and characterization of copper nanoparticles (Cu-Nps) using rongalite as reducing agent and photonic sintering of Cu-Nps ink for printed electronics. Int. J. Precis. Eng. Manuf. 5(2), 239–245 (2018)
13.
Zurück zum Zitat M. Singh, H.M. Haverinen, P. Dhagat, G.E. Jabbour, Inkjet printing-process and its applications. Adv. Mater. 22(6), 673–685 (2010) M. Singh, H.M. Haverinen, P. Dhagat, G.E. Jabbour, Inkjet printing-process and its applications. Adv. Mater. 22(6), 673–685 (2010)
14.
Zurück zum Zitat A. Kamyshny, S. Magdassi, Conductive nanomaterials for printed electronics. Small 10(17), 3515–3535 (2014) A. Kamyshny, S. Magdassi, Conductive nanomaterials for printed electronics. Small 10(17), 3515–3535 (2014)
15.
Zurück zum Zitat Y.Y. Hao, J. Gao, Z. Xu et al., Preparation of silver nanoparticles with hyperbranched polymers as a stabilizer for inkjet printing of flexible circuits. New J. Chem. 43(6), 2797–2803 (2019) Y.Y. Hao, J. Gao, Z. Xu et al., Preparation of silver nanoparticles with hyperbranched polymers as a stabilizer for inkjet printing of flexible circuits. New J. Chem. 43(6), 2797–2803 (2019)
16.
Zurück zum Zitat M. Wagner, C.D. O’Connell, D.G. Harman et al., Synthesis and optimization of PEDOT:PSS based ink for printing nanoarrays using dip-pen nanolithography. Synth. Met. 181, 64–71 (2013) M. Wagner, C.D. O’Connell, D.G. Harman et al., Synthesis and optimization of PEDOT:PSS based ink for printing nanoarrays using dip-pen nanolithography. Synth. Met. 181, 64–71 (2013)
17.
Zurück zum Zitat G.P. Evans, D.J. Buckley, N.T. Skipper, I.P. Parkin, Single-walled carbon nanotube composite inks for printed gas sensors: enhanced detection of NO2, NH3m EtOH and acetone. RSC Adv. 4(93), 51395–51403 (2014) G.P. Evans, D.J. Buckley, N.T. Skipper, I.P. Parkin, Single-walled carbon nanotube composite inks for printed gas sensors: enhanced detection of NO2, NH3m EtOH and acetone. RSC Adv. 4(93), 51395–51403 (2014)
18.
Zurück zum Zitat N.J. Zhang, R. Luo, X.Y. Liu, Liu, Tannic acid stabilized silver nanoparticles for inkjet printing of conductive flexible electronics. RSC Adv. 6(87), 83720–83729 (2016) N.J. Zhang, R. Luo, X.Y. Liu, Liu, Tannic acid stabilized silver nanoparticles for inkjet printing of conductive flexible electronics. RSC Adv. 6(87), 83720–83729 (2016)
19.
Zurück zum Zitat Q.F. Chen, G.H. Liu, G.X. Chen et al., Green synthesis of silver nanoparticles with glucose for conductivity enhancement of conductive ink. BioResources 12(1), 608–621 (2017) Q.F. Chen, G.H. Liu, G.X. Chen et al., Green synthesis of silver nanoparticles with glucose for conductivity enhancement of conductive ink. BioResources 12(1), 608–621 (2017)
20.
Zurück zum Zitat M.C. Dang, T.M.D. Dang, E. Fribourg-Blanc, Silver nanoparticles ink synthesis for conductive patterns fabrication using inkjet printing technology. Adv. Nat. Sci. 6(1), 015003–015010 (2015) M.C. Dang, T.M.D. Dang, E. Fribourg-Blanc, Silver nanoparticles ink synthesis for conductive patterns fabrication using inkjet printing technology. Adv. Nat. Sci. 6(1), 015003–015010 (2015)
21.
Zurück zum Zitat Z. Khan, S.A. Al-Thabaiti, A.Y. Obaid et al., Preparation and characterization of silver nanoparticles by chemical reduction method. Colloid Surf. B 82(2), 513–517 (2011) Z. Khan, S.A. Al-Thabaiti, A.Y. Obaid et al., Preparation and characterization of silver nanoparticles by chemical reduction method. Colloid Surf. B 82(2), 513–517 (2011)
22.
Zurück zum Zitat M.F. Zhang, A.W.B. Zhao, H.H. Sun et al., Rapid, large-scale, sonochemical synthesis of 3D nanotextured silver microflowers as highly efficient SERS substrates. J. Mater. Chem. 21(46), 18817–18824 (2011) M.F. Zhang, A.W.B. Zhao, H.H. Sun et al., Rapid, large-scale, sonochemical synthesis of 3D nanotextured silver microflowers as highly efficient SERS substrates. J. Mater. Chem. 21(46), 18817–18824 (2011)
23.
Zurück zum Zitat Y.Y. Hao, N. Zhang, J. Luo, X.Y. Liu, Green synthesis of silver nanoparticles by tannic acid with improved catalytic performance towards the reduction of methylene blue. NANO 13(01), 1850003–1850010 (2018) Y.Y. Hao, N. Zhang, J. Luo, X.Y. Liu, Green synthesis of silver nanoparticles by tannic acid with improved catalytic performance towards the reduction of methylene blue. NANO 13(01), 1850003–1850010 (2018)
24.
Zurück zum Zitat J. Ding, J. Liu, Q. Tian et al., Preparing of highly conductive patterns on flexible substrates by screen printing of silver nanoparticles with different size distribution. Nanoscale Res. Lett. 11(1), 412–419 (2016) J. Ding, J. Liu, Q. Tian et al., Preparing of highly conductive patterns on flexible substrates by screen printing of silver nanoparticles with different size distribution. Nanoscale Res. Lett. 11(1), 412–419 (2016)
25.
Zurück zum Zitat A. Kamyshny, J. Steinke, S. Magdassi, Metal-based inkjet inks for printed electronics. Open Appl. Phys. J. 4(19), 19–36 (2011) A. Kamyshny, J. Steinke, S. Magdassi, Metal-based inkjet inks for printed electronics. Open Appl. Phys. J. 4(19), 19–36 (2011)
26.
Zurück zum Zitat Z. Wang, X.W. Liang, T. Zhao et al., Facile synthesis of monodisperse silver nanoparticles for screen printing conductive inks. J. Mater. Sci. 28(22), 16939–16947 (2017) Z. Wang, X.W. Liang, T. Zhao et al., Facile synthesis of monodisperse silver nanoparticles for screen printing conductive inks. J. Mater. Sci. 28(22), 16939–16947 (2017)
27.
Zurück zum Zitat X.Q. Zhou, W. Li, M.L. Wu et al., Enhanced dispersibility and dispersion stability of dodecylamine-protected silver nanoparticles by dodecanethiol for ink-jet conductive inks. Appl. Surf. Sci. 292, 537–543 (2014) X.Q. Zhou, W. Li, M.L. Wu et al., Enhanced dispersibility and dispersion stability of dodecylamine-protected silver nanoparticles by dodecanethiol for ink-jet conductive inks. Appl. Surf. Sci. 292, 537–543 (2014)
28.
Zurück zum Zitat T.H. Chiang, K.D. Wu, T.E. Hsieh, Preparation of silver nanoparticles by using tripropylene glycol as the reducing agents of polyol process. IEEE Trans. Nanotechnol. 13(1), 116–122 (2014) T.H. Chiang, K.D. Wu, T.E. Hsieh, Preparation of silver nanoparticles by using tripropylene glycol as the reducing agents of polyol process. IEEE Trans. Nanotechnol. 13(1), 116–122 (2014)
29.
Zurück zum Zitat E.K. Elumalai, K. Kayalvizhi, S. Silvan, Coconut water assisted green synthesis of silver nanoparticles. J. Pharm. Bioallied Sci. 6(4), 241–245 (2014) E.K. Elumalai, K. Kayalvizhi, S. Silvan, Coconut water assisted green synthesis of silver nanoparticles. J. Pharm. Bioallied Sci. 6(4), 241–245 (2014)
30.
Zurück zum Zitat J. Bastos-Arrieta, A. Florido, C. Perez-Rafols et al., Green synthesis of Ag nanoparticles using grape stalk waste extract for the modification of screen-printed electrodes. Nanomaterials 8(11), 946–959 (2018) J. Bastos-Arrieta, A. Florido, C. Perez-Rafols et al., Green synthesis of Ag nanoparticles using grape stalk waste extract for the modification of screen-printed electrodes. Nanomaterials 8(11), 946–959 (2018)
31.
Zurück zum Zitat J.M. Jacob, M.S. John et al., Bactericidal coating of paper towels via sustainable biosynthesis of silver nanoparticles using ocimum sanctum leaf extract. Mater. Res. Express 6(4), 352–360 (2019) J.M. Jacob, M.S. John et al., Bactericidal coating of paper towels via sustainable biosynthesis of silver nanoparticles using ocimum sanctum leaf extract. Mater. Res. Express 6(4), 352–360 (2019)
32.
Zurück zum Zitat S.T. Dubas, V. Pimpan, Humic acid assisted synthesis of silver nanoparticles and its application to herbicide detection. Mater. Lett. 62(17–18), 2661–2663 (2008) S.T. Dubas, V. Pimpan, Humic acid assisted synthesis of silver nanoparticles and its application to herbicide detection. Mater. Lett. 62(17–18), 2661–2663 (2008)
33.
Zurück zum Zitat I.L. Gunsolus, M.P.S. Mousavi et al., Effects of humic and fulvic acids on silver nanoparticle stability, dssolution, and toxicity. Environ. Sci. Technol. 49(13), 8078–8086 (2015) I.L. Gunsolus, M.P.S. Mousavi et al., Effects of humic and fulvic acids on silver nanoparticle stability, dssolution, and toxicity. Environ. Sci. Technol. 49(13), 8078–8086 (2015)
34.
Zurück zum Zitat Y. Liu, R.G. Jordan, S.L. Qiu, Electronic-structures of ordered Ag–Mg alloys. Phys. Rev. B 49(7), 4478–4484 (1994) Y. Liu, R.G. Jordan, S.L. Qiu, Electronic-structures of ordered Ag–Mg alloys. Phys. Rev. B 49(7), 4478–4484 (1994)
35.
Zurück zum Zitat N.P. Bellafont, F. Vines, F. Illas, Performance of the TPSS functional on predicting core level binding energies of main group elements containing molecules: a good choice for molecules adsorbed on metal surfaces. J. Chem. Theory Comput. 12(1), 324–331 (2016) N.P. Bellafont, F. Vines, F. Illas, Performance of the TPSS functional on predicting core level binding energies of main group elements containing molecules: a good choice for molecules adsorbed on metal surfaces. J. Chem. Theory Comput. 12(1), 324–331 (2016)
36.
Zurück zum Zitat J.M. Bingham, J.N. Anker, L.E. Kreno, R.P. Van Duyne, Gas sensing with high-resolution localized surface plasmon resonance spectroscopy. J. Am. Chem. Soc. 132(49), 17358–17359 (2010) J.M. Bingham, J.N. Anker, L.E. Kreno, R.P. Van Duyne, Gas sensing with high-resolution localized surface plasmon resonance spectroscopy. J. Am. Chem. Soc. 132(49), 17358–17359 (2010)
37.
Zurück zum Zitat J. Sharma, N.K. Chaki, A.B. Mandale et al., Controlled interlinking of Au and Ag nanoclusters using 4-aminothiophenol as molecular interconnects. J. Colloid Interface Sci. 272(1), 145–152 (2004) J. Sharma, N.K. Chaki, A.B. Mandale et al., Controlled interlinking of Au and Ag nanoclusters using 4-aminothiophenol as molecular interconnects. J. Colloid Interface Sci. 272(1), 145–152 (2004)
38.
Zurück zum Zitat V.K. Kaushik, Xps core level spectra and auger parameters for some silver compounds. J. Electron. Spectrosc. 56(3), 273–277 (1991) V.K. Kaushik, Xps core level spectra and auger parameters for some silver compounds. J. Electron. Spectrosc. 56(3), 273–277 (1991)
39.
Zurück zum Zitat G. Zhang, H.Y. Gao, X.C. Tian et al., The performance study of OLED based on Cs2O doped Ag2O thin layer structure as the electronic injection layer. Mod. Phys. Lett. B 29(17), 1550080 (2015) G. Zhang, H.Y. Gao, X.C. Tian et al., The performance study of OLED based on Cs2O doped Ag2O thin layer structure as the electronic injection layer. Mod. Phys. Lett. B 29(17), 1550080 (2015)
40.
Zurück zum Zitat J.J. Alberts, Z. Filip, Metal binding in estuarine humic and fulvic acids: FTIR analysis of humic acid-metal complexes. Environ. Technol. 19(9), 923–931 (1998) J.J. Alberts, Z. Filip, Metal binding in estuarine humic and fulvic acids: FTIR analysis of humic acid-metal complexes. Environ. Technol. 19(9), 923–931 (1998)
41.
Zurück zum Zitat K.S. Moon, H. Dong, R. Maric et al., Thermal behavior of silver nanoparticles for low-temperature interconnect applications. J. Electron. Mater. 34(2), 168–175 (2005) K.S. Moon, H. Dong, R. Maric et al., Thermal behavior of silver nanoparticles for low-temperature interconnect applications. J. Electron. Mater. 34(2), 168–175 (2005)
42.
Zurück zum Zitat F. Zhang, Y.W. Li et al., Highly conductive, flexible and stretchable conductors based on fractal silver nanostructures. J. Mater. Chem. C 6, 3999–4006 (2018) F. Zhang, Y.W. Li et al., Highly conductive, flexible and stretchable conductors based on fractal silver nanostructures. J. Mater. Chem. C 6, 3999–4006 (2018)
43.
Zurück zum Zitat T.T. Nge, M. Nogi, K. Suganuma, Electrical functionality of inkjet-printed silver nanoparticle conductive tracks on nanostructured paper compared with those on plastic substrates. J. Mater. Chem. C 1, 5235–5243 (2013) T.T. Nge, M. Nogi, K. Suganuma, Electrical functionality of inkjet-printed silver nanoparticle conductive tracks on nanostructured paper compared with those on plastic substrates. J. Mater. Chem. C 1, 5235–5243 (2013)
Metadaten
Titel
Humic acid assisted chemical synthesis of silver nanoparticles for inkjet printing of flexible circuits
verfasst von
Yueyue Hao
Zesheng Xu
Jian Gao
Kaiyun Wu
Jingyu Liu
Jing Luo
Publikationsdatum
05.11.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 23/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-02372-z

Weitere Artikel der Ausgabe 23/2019

Journal of Materials Science: Materials in Electronics 23/2019 Zur Ausgabe

Neuer Inhalt