Skip to main content

2023 | OriginalPaper | Buchkapitel

Hybrid Deep Learning Based Model on Sentiment Analysis of Peer Reviews on Scientific Papers

verfasst von : Ritika Sarkar, Prakriti Singh, Mustafa Musa Jaber, Shreya Nandan, Shruti Mishra, Sandeep Kumar Satapathy, Chinmaya Ranjan Pattnaik

Erschienen in: Intelligent Systems and Machine Learning

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The peer review process involved in evaluating academic papers submitted to journals and conferences is very perplexing as at times the scores given by the reviewer may be poor in contrast with the textual comments which are in a positive light. In such a case, it becomes difficult for the judging chair to come to a concrete decision regarding the accept or reject decision of the papers. In our paper, we aim to extract the sentiment from the reviewers’ opinions and use it along with the numerical scores to correlate that in order to predict the orientation of the review, i.e., the degree of acceptance. Our proposed methods include Machine learning models like Naive Bayes, Deep learning models involving LSTM and a Hybrid model with BiLSTM, LSTM, CNN, and finally Graph based model GCN. The dataset is taken from the UCI repository consisting of peer reviews in Spanish along with other parameters used for judging a paper. Bernoulli’s Naive Bayes was the model that fared the highest amongst all the approaches, with an accuracy of 75.61% after varying the parameters to enhance the accuracy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chakraborty, S., Goyal, P., Mukherjee, A.: Aspect-based sentiment analysis of scientific reviews. In: Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020, pp. 207–216. Association for Computing Machinery, New York, NY, USA (2020) Chakraborty, S., Goyal, P., Mukherjee, A.: Aspect-based sentiment analysis of scientific reviews. In: Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020, pp. 207–216. Association for Computing Machinery, New York, NY, USA (2020)
2.
Zurück zum Zitat Keith, B., Meneses, C.: A hybrid approach for sentiment analysis applied to paper reviews (2017) Keith, B., Meneses, C.: A hybrid approach for sentiment analysis applied to paper reviews (2017)
3.
Zurück zum Zitat Kang, D., et al.: A dataset of peer reviews (PeerRead): collection, insights and NLP applications. In: NAACL 2018 (2018) Kang, D., et al.: A dataset of peer reviews (PeerRead): collection, insights and NLP applications. In: NAACL 2018 (2018)
4.
Zurück zum Zitat Fernández Anta, A., Morere, P., Chiroque, L.F., Santos, A.: Techniques for sentiment analysis and topic detection of Spanish tweets: preliminary report. In: Spanish Society for Natural Language Processing Conference (SEPLN 2012), September 2012 Fernández Anta, A., Morere, P., Chiroque, L.F., Santos, A.: Techniques for sentiment analysis and topic detection of Spanish tweets: preliminary report. In: Spanish Society for Natural Language Processing Conference (SEPLN 2012), September 2012
5.
Zurück zum Zitat Aue, A., Gamon, M.: Customizing sentiment classifiers to new domains: a case study. In: Proceedings of Recent Advances in Natural Language Processing (RANLP), vol. 1, no. 3.1, p. 2-1, September 2005 Aue, A., Gamon, M.: Customizing sentiment classifiers to new domains: a case study. In: Proceedings of Recent Advances in Natural Language Processing (RANLP), vol. 1, no. 3.1, p. 2-1, September 2005
6.
Zurück zum Zitat Baccianella, S., Esuli, A., Sebastiani, F.: SentiWordNet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In: Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC 2010) (2010) Baccianella, S., Esuli, A., Sebastiani, F.: SentiWordNet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In: Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC 2010) (2010)
7.
Zurück zum Zitat Shi, H., Zhan, W., Li, X.: A supervised fine-grained sentiment analysis system for online reviews. Intell. Autom. Soft Comput. 21(4), 589–605 (2015)CrossRef Shi, H., Zhan, W., Li, X.: A supervised fine-grained sentiment analysis system for online reviews. Intell. Autom. Soft Comput. 21(4), 589–605 (2015)CrossRef
8.
Zurück zum Zitat Tang, D., Qin, B., Liu, T.: Document modeling with gated recurrent neural network for sentiment classification. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 1422–1432, September 2015 Tang, D., Qin, B., Liu, T.: Document modeling with gated recurrent neural network for sentiment classification. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 1422–1432, September 2015
9.
Zurück zum Zitat Zhang, L., Ghosh, R., Dekhil, M., Hsu, M., Liu, B.: Combining lexicon-based and learning-based methods for Twitter sentiment analysis. HP Laboratories, Technical report HPL-2011 89, pp. 1–8 (2011) Zhang, L., Ghosh, R., Dekhil, M., Hsu, M., Liu, B.: Combining lexicon-based and learning-based methods for Twitter sentiment analysis. HP Laboratories, Technical report HPL-2011 89, pp. 1–8 (2011)
10.
Zurück zum Zitat Yao, L., Mao, C., Luo, Y.: Graph convolutional networks for text classification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 7370–7377, July 2019 Yao, L., Mao, C., Luo, Y.: Graph convolutional networks for text classification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 7370–7377, July 2019
11.
Zurück zum Zitat Kök, H., İzgi, M.S., Acılar, A.M.: Evaluation of the artificial neural network and Naive Bayes Models trained with vertebra ratios for growth and development determination. Turk. J. Orthod. 34(1), 2 (2021)CrossRef Kök, H., İzgi, M.S., Acılar, A.M.: Evaluation of the artificial neural network and Naive Bayes Models trained with vertebra ratios for growth and development determination. Turk. J. Orthod. 34(1), 2 (2021)CrossRef
13.
Zurück zum Zitat Singh, M., Bhatt, M.W., Bedi, H.S., Mishra, U.: Performance of Bernoulli’s Naive bayes classifier in the detection of fake news. Mater. Today Proc. (2020) Singh, M., Bhatt, M.W., Bedi, H.S., Mishra, U.: Performance of Bernoulli’s Naive bayes classifier in the detection of fake news. Mater. Today Proc. (2020)
14.
Zurück zum Zitat Seref, B., Bostanci, E.: Sentiment analysis using Naive Bayes and complement Naive Bayes classifier algorithms on Hadoop framework. In: 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), pp. 1–7. IEEE, October 2018 Seref, B., Bostanci, E.: Sentiment analysis using Naive Bayes and complement Naive Bayes classifier algorithms on Hadoop framework. In: 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), pp. 1–7. IEEE, October 2018
15.
16.
Zurück zum Zitat Zhang, S., Yin, H., Chen, T., Hung, Q.V.N., Huang, Z., Cui, L.: GCN-based user representation learning for unifying robust recommendation and fraudster detection. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 689–698, July 2020 Zhang, S., Yin, H., Chen, T., Hung, Q.V.N., Huang, Z., Cui, L.: GCN-based user representation learning for unifying robust recommendation and fraudster detection. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 689–698, July 2020
17.
Zurück zum Zitat Satapathy, S.K., Jagadev, A.K., Dehuri, S.: An empirical analysis of training algorithms of neural networks: a case study of EEG signal classification using Java framework. In: Jain, L.C., Patnaik, S., Ichalkaranje, N. (eds.) Intelligent Computing, Communication and Devices. AISC, vol. 309, pp. 151–160. Springer, New Delhi (2015). https://doi.org/10.1007/978-81-322-2009-1_18CrossRef Satapathy, S.K., Jagadev, A.K., Dehuri, S.: An empirical analysis of training algorithms of neural networks: a case study of EEG signal classification using Java framework. In: Jain, L.C., Patnaik, S., Ichalkaranje, N. (eds.) Intelligent Computing, Communication and Devices. AISC, vol. 309, pp. 151–160. Springer, New Delhi (2015). https://​doi.​org/​10.​1007/​978-81-322-2009-1_​18CrossRef
18.
Zurück zum Zitat Mishra, S., Mishra, D., Satapathy, S.K.: Fuzzy frequent pattern mining from gene expression data using dynamic multi-swarm particle swarm optimization. In: 2nd International Conference on Computer, Communication, Control and Information Technology (C3IT 2012), Published in Journal Procedia Technology, vol. 4, pp. 797–801, February 2012 Mishra, S., Mishra, D., Satapathy, S.K.: Fuzzy frequent pattern mining from gene expression data using dynamic multi-swarm particle swarm optimization. In: 2nd International Conference on Computer, Communication, Control and Information Technology (C3IT 2012), Published in Journal Procedia Technology, vol. 4, pp. 797–801, February 2012
19.
Zurück zum Zitat Chandra, S., Gourisaria, M.K., Harshvardhan, G.M., Rautaray, S.S., Pandey, M., Mohanty, S.N.: Semantic analysis of sentiments through web-mined Twitter corpus. In: Proceedings of the International Semantic Intelligence Conference 2021 (ISIC 2021), New Delhi, India, 25–27 February 2021. CEUR Workshop Proceedings, vol. 2786, pp. 202, 122–135 (2021). CEUR-WS.org Chandra, S., Gourisaria, M.K., Harshvardhan, G.M., Rautaray, S.S., Pandey, M., Mohanty, S.N.: Semantic analysis of sentiments through web-mined Twitter corpus. In: Proceedings of the International Semantic Intelligence Conference 2021 (ISIC 2021), New Delhi, India, 25–27 February 2021. CEUR Workshop Proceedings, vol. 2786, pp. 202, 122–135 (2021). CEUR-WS.org
Metadaten
Titel
Hybrid Deep Learning Based Model on Sentiment Analysis of Peer Reviews on Scientific Papers
verfasst von
Ritika Sarkar
Prakriti Singh
Mustafa Musa Jaber
Shreya Nandan
Shruti Mishra
Sandeep Kumar Satapathy
Chinmaya Ranjan Pattnaik
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-35081-8_9