Skip to main content

2019 | OriginalPaper | Buchkapitel

15. Hybrid Genetic Algorithms to Solve the Multidimensional Knapsack Problem

verfasst von : Abdellah Rezoug, Mohamed Bader-El-Den, Dalila Boughaci

Erschienen in: Bioinspired Heuristics for Optimization

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper introduces solutions to deal with the Multidimensional Knapsack Problem (MKP), which is a NP-hard combinatorial optimisation problem. Two hybrid heuristics based on Genetic Algorithms (GA) are proposed: the Memetic Search Algorithm (MSA) and the Genetic Algorithm Guided by Pretreatment information (GAGP). MSA combines sequentially GA with the Stochastic Local Search-Simulated Annealing algorithm (SLSA). GAGP is composed of two steps, in the first, a ratio-based greedy algorithm extracts useful information and the core concept is utilised to decompose items according to their ratios; In the second, these information are integrated to the operators of a GA allowing to reach the best solutions faster. An operator is added to the GA to dynamically update the ratio values of the items. Two groups of data were used to examine the proposed approaches. A group of simple instances of MKP has been used to examine MSA and a group of complex MKP has been used to examine GAGP. The obtained results indicate that MSA and GAGP have the capability to give solutions of high quality.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Fukunaga, A. S. (2011). A branch-and-bound algorithm for hard multiple knapsack problems. Annals of Operations Research, 184(1), 97–119.MathSciNetCrossRef Fukunaga, A. S. (2011). A branch-and-bound algorithm for hard multiple knapsack problems. Annals of Operations Research, 184(1), 97–119.MathSciNetCrossRef
2.
Zurück zum Zitat Volgenant, A., & Zoon, J. (1990). An improved heuristic for multidimensional 0–1 knapsack problems. Journal of the Operational Research Society, 41(10), 963–970.CrossRef Volgenant, A., & Zoon, J. (1990). An improved heuristic for multidimensional 0–1 knapsack problems. Journal of the Operational Research Society, 41(10), 963–970.CrossRef
3.
Zurück zum Zitat Deane, J., & Agarwal, A. (2013). Neural, genetic, and neurogenetic approaches for solving the 0–1 multidimensional knapsack problem. International Journal of Management & Information Systems (Online), 17(1), 43. Deane, J., & Agarwal, A. (2013). Neural, genetic, and neurogenetic approaches for solving the 0–1 multidimensional knapsack problem. International Journal of Management & Information Systems (Online), 17(1), 43.
4.
Zurück zum Zitat Yoon, Y., & Kim, Y. H. (2013). A memetic lagrangian heuristic for the 0–1 multidimensional knapsack problem. Discrete Dynamics in Nature and Society, 2013. Yoon, Y., & Kim, Y. H. (2013). A memetic lagrangian heuristic for the 0–1 multidimensional knapsack problem. Discrete Dynamics in Nature and Society, 2013.
5.
Zurück zum Zitat Rezoug, A., Boughaci, D., & Badr-El-Den, M. (2015). Memetic algorithm for solving the 0–1 multidimensional knapsack problem. In Portuguese Conference on Artificial Intelligence (pp. 298–304). Berlin: Springer. Rezoug, A., Boughaci, D., & Badr-El-Den, M. (2015). Memetic algorithm for solving the 0–1 multidimensional knapsack problem. In Portuguese Conference on Artificial Intelligence (pp. 298–304). Berlin: Springer.
6.
Zurück zum Zitat Valls, V., Ballestin, F., & Quintanilla, S. (2008). A hybrid genetic algorithm for the resource-constrained project scheduling problem. European Journal of Operational Research, 185(2), 495–508.CrossRef Valls, V., Ballestin, F., & Quintanilla, S. (2008). A hybrid genetic algorithm for the resource-constrained project scheduling problem. European Journal of Operational Research, 185(2), 495–508.CrossRef
7.
Zurück zum Zitat Jat, S. N., & Yang, S. (2009). A guided search genetic algorithm for the university course timetabling problem. Jat, S. N., & Yang, S. (2009). A guided search genetic algorithm for the university course timetabling problem.
8.
Zurück zum Zitat Yang, S., & Jat, S. N. (2011). Genetic algorithms with guided and local search strategies for university course timetabling. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 41(1), 93–106. Yang, S., & Jat, S. N. (2011). Genetic algorithms with guided and local search strategies for university course timetabling. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 41(1), 93–106.
9.
Zurück zum Zitat Acan, A., & Tekol, Y. (2003). Chromosome reuse in genetic algorithms. In Genetic and Evolutionary Computation Conference (pp. 695–705). Berlin: Springer. Acan, A., & Tekol, Y. (2003). Chromosome reuse in genetic algorithms. In Genetic and Evolutionary Computation Conference (pp. 695–705). Berlin: Springer.
10.
Zurück zum Zitat Louis, S., & Li, G. (1997). Augmenting genetic algorithms with memory to solve traveling salesman problems. In Proceedings of the Joint Conference on Information Sciences (pp. 108–111). Louis, S., & Li, G. (1997). Augmenting genetic algorithms with memory to solve traveling salesman problems. In Proceedings of the Joint Conference on Information Sciences (pp. 108–111).
11.
Zurück zum Zitat Boughaci, D., Benhamou, B., & Drias, H. (2010). Local search methods for the optimal winner determination problem in combinatorial auctions. Journal of Mathematical Modelling and Algorithms, 9(2), 165–180.MathSciNetCrossRef Boughaci, D., Benhamou, B., & Drias, H. (2010). Local search methods for the optimal winner determination problem in combinatorial auctions. Journal of Mathematical Modelling and Algorithms, 9(2), 165–180.MathSciNetCrossRef
12.
Zurück zum Zitat Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P., et al. (1983). Optimization by simulated annealing. science, 220(4598), 671–680. Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P., et al. (1983). Optimization by simulated annealing. science, 220(4598), 671–680.
13.
Zurück zum Zitat Bean, J. C. (1994). Genetic algorithms and random keys for sequencing and optimization. ORSA Journal on Computing, 6(2), 154–160.CrossRef Bean, J. C. (1994). Genetic algorithms and random keys for sequencing and optimization. ORSA Journal on Computing, 6(2), 154–160.CrossRef
14.
Zurück zum Zitat Pan, Q. K., Suganthan, P. N., Tasgetiren, M. F., & Liang, J. J. (2010). A self-adaptive global best harmony search algorithm for continuous optimization problems. Applied Mathematics and Computation, 216(3), 830–848.MathSciNetCrossRef Pan, Q. K., Suganthan, P. N., Tasgetiren, M. F., & Liang, J. J. (2010). A self-adaptive global best harmony search algorithm for continuous optimization problems. Applied Mathematics and Computation, 216(3), 830–848.MathSciNetCrossRef
15.
Zurück zum Zitat Yang, H., Wang, M., & Yang, C. (2013). A hybrid of rough sets and genetic algorithms for solving the 0–1 multidimensional knapsack problem. Int. J. Innovative Comput Inf. Control, 9(9), 3537–3548. Yang, H., Wang, M., & Yang, C. (2013). A hybrid of rough sets and genetic algorithms for solving the 0–1 multidimensional knapsack problem. Int. J. Innovative Comput Inf. Control, 9(9), 3537–3548.
16.
Zurück zum Zitat Veni, K. K., & Balachandar, S. R. (2010). A new heuristic approach for large size zero-one multi knapsack problem using intercept matrix. International Journal of Computing Science and Mathematics, 4(5), 259–263. Veni, K. K., & Balachandar, S. R. (2010). A new heuristic approach for large size zero-one multi knapsack problem using intercept matrix. International Journal of Computing Science and Mathematics, 4(5), 259–263.
17.
18.
Zurück zum Zitat Shih, W. (1979). A branch and bound method for the multiconstraint zero-one knapsack problem. Journal of the Operational Research Society, 30(4), 369–378.CrossRef Shih, W. (1979). A branch and bound method for the multiconstraint zero-one knapsack problem. Journal of the Operational Research Society, 30(4), 369–378.CrossRef
19.
Zurück zum Zitat Puchinger, J., Raidl, G. R., & Pferschy, U. (2006). The core concept for the multidimensional knapsack problem. In European Conference on Evolutionary Computation in Combinatorial Optimization (pp. 195–208). Berlin: Springer. Puchinger, J., Raidl, G. R., & Pferschy, U. (2006). The core concept for the multidimensional knapsack problem. In European Conference on Evolutionary Computation in Combinatorial Optimization (pp. 195–208). Berlin: Springer.
20.
Zurück zum Zitat Senju, S., & Toyoda, Y. (1968). An approach to linear programming with 0–1 variables. Management Science, 15, B196–B207. Senju, S., & Toyoda, Y. (1968). An approach to linear programming with 0–1 variables. Management Science, 15, B196–B207.
21.
Zurück zum Zitat Huston, S., Puchinger, J., & Stuckey, P. (2008). The core concept for 0/1 integer programming. In Proceedings of the Fourteenth Symposium on Computing: The Australasian Theory-Volume 77 (pp. 39–47). South Melbourne: Australian Computer Society, Inc. Huston, S., Puchinger, J., & Stuckey, P. (2008). The core concept for 0/1 integer programming. In Proceedings of the Fourteenth Symposium on Computing: The Australasian Theory-Volume 77 (pp. 39–47). South Melbourne: Australian Computer Society, Inc.
22.
Zurück zum Zitat Akçay, Y., Li, H., & Xu, S. H. (2007). Greedy algorithm for the general multidimensional knapsack problem. Annals of Operations Research, 150(1), 17–29.MathSciNetCrossRef Akçay, Y., Li, H., & Xu, S. H. (2007). Greedy algorithm for the general multidimensional knapsack problem. Annals of Operations Research, 150(1), 17–29.MathSciNetCrossRef
23.
Zurück zum Zitat Magazine, M., & Oguz, O. (1984). A heuristic algorithm for the multidimensional zero-one knapsack problem. European Journal of Operational Research, 16(3), 319–326.MathSciNetCrossRef Magazine, M., & Oguz, O. (1984). A heuristic algorithm for the multidimensional zero-one knapsack problem. European Journal of Operational Research, 16(3), 319–326.MathSciNetCrossRef
24.
Zurück zum Zitat Baroni, M. D. V., & Varejão, F. M. (2015). A shuffled complex evolution algorithm for the multidimensional knapsack problem. In Iberoamerican Congress on Pattern Recognition (pp. 768–775). Berlin: Springer. Baroni, M. D. V., & Varejão, F. M. (2015). A shuffled complex evolution algorithm for the multidimensional knapsack problem. In Iberoamerican Congress on Pattern Recognition (pp. 768–775). Berlin: Springer.
25.
Zurück zum Zitat Chu, P. C., & Beasley, J. E. (1998). A genetic algorithm for the multidimensional knapsack problem. Journal of Heuristics, 4(1), 63–86.CrossRef Chu, P. C., & Beasley, J. E. (1998). A genetic algorithm for the multidimensional knapsack problem. Journal of Heuristics, 4(1), 63–86.CrossRef
26.
Zurück zum Zitat Hill, R. R., Cho, Y. K., & Moore, J. T. (2012). Problem reduction heuristic for the 0–1 multidimensional knapsack problem. Computers & Operations Research, 39(1), 19–26.MathSciNetCrossRef Hill, R. R., Cho, Y. K., & Moore, J. T. (2012). Problem reduction heuristic for the 0–1 multidimensional knapsack problem. Computers & Operations Research, 39(1), 19–26.MathSciNetCrossRef
27.
Zurück zum Zitat Drake, J. H., Özcan, E., & Burke, E. K. (2015). Modified choice function heuristic selection for the multidimensional knapsack problem. In Genetic and Evolutionary Computing (pp. 225–234). Berlin: Springer. Drake, J. H., Özcan, E., & Burke, E. K. (2015). Modified choice function heuristic selection for the multidimensional knapsack problem. In Genetic and Evolutionary Computing (pp. 225–234). Berlin: Springer.
Metadaten
Titel
Hybrid Genetic Algorithms to Solve the Multidimensional Knapsack Problem
verfasst von
Abdellah Rezoug
Mohamed Bader-El-Den
Dalila Boughaci
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-95104-1_15