Skip to main content
Erschienen in:
Buchtitelbild

2010 | OriginalPaper | Buchkapitel

5. Hybrid Machine Learning Model for Continuous Microarray Time Series

verfasst von : Sio-Iong Ao

Erschienen in: Advances in Machine Learning and Data Analysis

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A hybrid machine learning model of the principal component analysis and neural network is described for the continuous microarray gene expression time series. The methodology can model numerically the continuous gene expression time series. The proposed model can give us the extracted features from the gene expressions time series with higher prediction accuracies. It can help practitioners to gain a better understanding of a cell cycle, and to find the dependency of genes, which is useful for drug discoveries. In this chapter, we describe the background, the machine learning algorithms, and then the application of the hybrid machine learning in the microarray analysis. The machine learning model is compared with other popular continuous prediction methods. Based on the results of two public microarray datasets, the hybrid method outperforms the other continuous prediction methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Aach, J. and Church, G. 2001. Aligning gene expression time series with time warping algorithms. Bioinformatics, 17(6): 495–508.CrossRef Aach, J. and Church, G. 2001. Aligning gene expression time series with time warping algorithms. Bioinformatics, 17(6): 495–508.CrossRef
2.
Zurück zum Zitat Acta, A. 2001. Chemometric strategies for normalisation of gene expression data obtained from cDNA microarrays. Analytica Chimica Acta, 446(1–2): 449–464. Acta, A. 2001. Chemometric strategies for normalisation of gene expression data obtained from cDNA microarrays. Analytica Chimica Acta, 446(1–2): 449–464.
3.
Zurück zum Zitat Ao, S. et al. 2006. Gene expression time series modeling with principal component and neural network. Soft Computing – A Fusion of Foundations, Methodologies and Applications, 10(4): 351–359. Ao, S. et al. 2006. Gene expression time series modeling with principal component and neural network. Soft Computing – A Fusion of Foundations, Methodologies and Applications, 10(4): 351–359.
4.
5.
Zurück zum Zitat Barron, A. R. 1991. Complexity regularization with application to artificial neural networks. Nonparametric Functional Estimation and Related Topics, 561–576. Barron, A. R. 1991. Complexity regularization with application to artificial neural networks. Nonparametric Functional Estimation and Related Topics, 561–576.
6.
Zurück zum Zitat Barron, A. R. 1992. Neural net approximation. Proceedings of the Seventh Yale Workshop on Adaptive and Learning Systems. New Haven, CT: Yale University Press, pp. 69–72. Barron, A. R. 1992. Neural net approximation. Proceedings of the Seventh Yale Workshop on Adaptive and Learning Systems. New Haven, CT: Yale University Press, pp. 69–72.
7.
Zurück zum Zitat Bergeron, B. 2003. Bioinformatics Computing. Upper Saddle River, NJ: Prentice Hall. Bergeron, B. 2003. Bioinformatics Computing. Upper Saddle River, NJ: Prentice Hall.
8.
Zurück zum Zitat Bicciato et al. 2003. PCA disjoint models for multiclass cancer analysis using gene expression data. Bioinformatics, 19(5): 571–578.CrossRef Bicciato et al. 2003. PCA disjoint models for multiclass cancer analysis using gene expression data. Bioinformatics, 19(5): 571–578.CrossRef
9.
Zurück zum Zitat Butte, A. et al. 2001. Comparing the similarity of time-series gene expression using signal processing metrics. Journal of Biomedical Informatics, 34: 396–405.CrossRef Butte, A. et al. 2001. Comparing the similarity of time-series gene expression using signal processing metrics. Journal of Biomedical Informatics, 34: 396–405.CrossRef
10.
Zurück zum Zitat Causton, H. et al. 2003. Microarray Gene Expression Data Analysis: A Beginner’s Guide. Malden, MA: Blackwell. Causton, H. et al. 2003. Microarray Gene Expression Data Analysis: A Beginner’s Guide. Malden, MA: Blackwell.
11.
Zurück zum Zitat Chen, T., Filkov, V. and Skiena, S. 2001. Identifying gene regulatory networks from experimental data. Parallel Computing, 27: 141–162.MATHCrossRef Chen, T., Filkov, V. and Skiena, S. 2001. Identifying gene regulatory networks from experimental data. Parallel Computing, 27: 141–162.MATHCrossRef
12.
Zurück zum Zitat Chen, X. et al. 2008. Supervised principal component analysis for gene set enrichment of microarray data with continuous or survival outcomes. Bioinformatics, 24(21): 2474–2481.CrossRef Chen, X. et al. 2008. Supervised principal component analysis for gene set enrichment of microarray data with continuous or survival outcomes. Bioinformatics, 24(21): 2474–2481.CrossRef
13.
Zurück zum Zitat Cho, R. et al. 1998. A genome-wide transcriptional analysis of the mitotic cell cycle. Molecular Cell, 2: 65–73.CrossRef Cho, R. et al. 1998. A genome-wide transcriptional analysis of the mitotic cell cycle. Molecular Cell, 2: 65–73.CrossRef
14.
Zurück zum Zitat Comon, P. 1994. Independent component analysis-a new concept? Signal Processing, 36:287–314.MATHCrossRef Comon, P. 1994. Independent component analysis-a new concept? Signal Processing, 36:287–314.MATHCrossRef
15.
Zurück zum Zitat Costa, I. G. et al. 2002. A symbolic approach to gene expression time series analysis. Neural Networks 2002 Brazilian Symposium. 25–30. Costa, I. G. et al. 2002. A symbolic approach to gene expression time series analysis. Neural Networks 2002 Brazilian Symposium. 25–30.
16.
Zurück zum Zitat Craig, P., Kennedy, J. and Cumming, A. 2002. Towards visualising temporal features in large scale microarray time-series data. Proceedings of the Sixth International Conference on Information Visualisation – IV2002, London: UK, 10–12 July 2002. 427–433. Craig, P., Kennedy, J. and Cumming, A. 2002. Towards visualising temporal features in large scale microarray time-series data. Proceedings of the Sixth International Conference on Information Visualisation – IV2002, London: UK, 10–12 July 2002. 427–433.
17.
Zurück zum Zitat Dewey, T. 2002. From microarrays to networks: mining expression time series. Information Biotechnology Supplement, Drug Discovery Today, 7(20): 170–175. Dewey, T. 2002. From microarrays to networks: mining expression time series. Information Biotechnology Supplement, Drug Discovery Today, 7(20): 170–175.
18.
Zurück zum Zitat D’haeseieer, P., Liang, S. and Somogyi, R. 1999. Gene expression data analysis and modeling. Pacific Symposium on Biocomputing, Hawaii: USA. D’haeseieer, P., Liang, S. and Somogyi, R. 1999. Gene expression data analysis and modeling. Pacific Symposium on Biocomputing, Hawaii: USA.
19.
Zurück zum Zitat Enders, W. 1995. Applied Econometric Time Series. New York: Wiley. Enders, W. 1995. Applied Econometric Time Series. New York: Wiley.
20.
Zurück zum Zitat Futschik, M. and Kasabov, N. 2002. Fuzzy clustering of gene expression data. Fuzzy Systems, 2002. Proceedings of the 2002 IEEE International Conference on FUZZ-IEEE’02, Volume: 1, 12–17 May 2002. 414–419. Futschik, M. and Kasabov, N. 2002. Fuzzy clustering of gene expression data. Fuzzy Systems, 2002. Proceedings of the 2002 IEEE International Conference on FUZZ-IEEE’02, Volume: 1, 12–17 May 2002. 414–419.
21.
Zurück zum Zitat Haykin, S. 1994. Neural Networks: A Comprehensive Foundation. Englewood Cliffs, NJ: Prentice Hall.MATH Haykin, S. 1994. Neural Networks: A Comprehensive Foundation. Englewood Cliffs, NJ: Prentice Hall.MATH
22.
Zurück zum Zitat Haykin, S. 1999. Neural Networks – A Comprehensive Foundation (2nd ed.). Upper Saddle River, NJ: Prentice Hall.MATH Haykin, S. 1999. Neural Networks – A Comprehensive Foundation (2nd ed.). Upper Saddle River, NJ: Prentice Hall.MATH
23.
Zurück zum Zitat Herrero, J., Valencia, A. and Dopzao, J. 2001. A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics, 17(2): 126–136.CrossRef Herrero, J., Valencia, A. and Dopzao, J. 2001. A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics, 17(2): 126–136.CrossRef
24.
Zurück zum Zitat Hornquist, M., Hertz, J. and Wahde, M. 2003. Effective dimensionality of large-scale expression data using principal component analysis. BioSystem, 65: 147–156.CrossRef Hornquist, M., Hertz, J. and Wahde, M. 2003. Effective dimensionality of large-scale expression data using principal component analysis. BioSystem, 65: 147–156.CrossRef
25.
Zurück zum Zitat Huang, S. H., Tan K. K. and Tang, K. Z. 2004. Neural network control: theory and applications. RSP, Hertfordshire: UK. Huang, S. H., Tan K. K. and Tang, K. Z. 2004. Neural network control: theory and applications. RSP, Hertfordshire: UK.
26.
Zurück zum Zitat Hyvärien, A., Karhunen, J. and Oja, E. 2001. Independent Component Analysis. New York: Wiley.CrossRef Hyvärien, A., Karhunen, J. and Oja, E. 2001. Independent Component Analysis. New York: Wiley.CrossRef
27.
Zurück zum Zitat Jiang, D., Pei, J. and Zhang, A. 2003. DHC: a density-based hierarchical clustering method for time series gene expression data. Proceedings of the Third IEEE Symposium on Bioinformatics and Bioengineering, Bethesda, Maryland: USA, 10–12 March 2003. 393–400. Jiang, D., Pei, J. and Zhang, A. 2003. DHC: a density-based hierarchical clustering method for time series gene expression data. Proceedings of the Third IEEE Symposium on Bioinformatics and Bioengineering, Bethesda, Maryland: USA, 10–12 March 2003. 393–400.
28.
Zurück zum Zitat Ji, X. et al. 2003. Mining gene expression data using a novel approach based on Hidden Markov Models. FEBS Letter, 542: 124–131.CrossRef Ji, X. et al. 2003. Mining gene expression data using a novel approach based on Hidden Markov Models. FEBS Letter, 542: 124–131.CrossRef
29.
Zurück zum Zitat Jutten, C. and Herault, J. 1991. Blind separation of sources, part I: and adaptive algorithm based on neuromimetic architecture. Signal Processing, 24: 1–10.MATHCrossRef Jutten, C. and Herault, J. 1991. Blind separation of sources, part I: and adaptive algorithm based on neuromimetic architecture. Signal Processing, 24: 1–10.MATHCrossRef
30.
Zurück zum Zitat Keedwell, E. and Narayanan, A. 2002. Genetic algorithms for gene expression analysis. First European Workshop on Evolutionary Bioinformatics, 2611: 76–86. Keedwell, E. and Narayanan, A. 2002. Genetic algorithms for gene expression analysis. First European Workshop on Evolutionary Bioinformatics, 2611: 76–86.
31.
Zurück zum Zitat Kesseli, J., Ramo, P. and Yli-Harja, O. 2004. Inference of Boolean models of genetic networks using monotonic time transformations. First International Symposium on Control, Communications and Signal Processing, Hammamet: Tunisia, 21–24 March 2004. 759–762. Kesseli, J., Ramo, P. and Yli-Harja, O. 2004. Inference of Boolean models of genetic networks using monotonic time transformations. First International Symposium on Control, Communications and Signal Processing, Hammamet: Tunisia, 21–24 March 2004. 759–762.
32.
Zurück zum Zitat Khan, J. et al. 2001. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine, 7(6): 673–679.CrossRef Khan, J. et al. 2001. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine, 7(6): 673–679.CrossRef
33.
Zurück zum Zitat Kong, W. et al. 2009. Independent component analysis of Alzheimer’s DNA microarray gene expression data. Molecular Neurodegener, 4: 5, doi: 10.1186/1750-1326-4-5.CrossRef Kong, W. et al. 2009. Independent component analysis of Alzheimer’s DNA microarray gene expression data. Molecular Neurodegener, 4: 5, doi: 10.1186/1750-1326-4-5.CrossRef
34.
Zurück zum Zitat Langmead, C., McClung, C. and Donald, B. 2002. A maximum entropy algorithm for rhythmic analysis of genome-wide expression patterns. Bioinformatics Conference 2002, IEEE. 237–245. Langmead, C., McClung, C. and Donald, B. 2002. A maximum entropy algorithm for rhythmic analysis of genome-wide expression patterns. Bioinformatics Conference 2002, IEEE. 237–245.
35.
Zurück zum Zitat Lynn, K. et al. 2009. A neural network model for constructing endophenotypes of common complex diseases: an application to male young-onset hypertension microarray data. Bioinformatics, 25(8): 981–988.CrossRef Lynn, K. et al. 2009. A neural network model for constructing endophenotypes of common complex diseases: an application to male young-onset hypertension microarray data. Bioinformatics, 25(8): 981–988.CrossRef
36.
Zurück zum Zitat McCulloch, W. W. and Pitts, W. 1943. A logical calculus of the ideas imminent in nervous activity. Bulletin of Mathematical Biophysics, 5: 115–133.MATHCrossRefMathSciNet McCulloch, W. W. and Pitts, W. 1943. A logical calculus of the ideas imminent in nervous activity. Bulletin of Mathematical Biophysics, 5: 115–133.MATHCrossRefMathSciNet
37.
Zurück zum Zitat Nikkilä, J. et al. 2002. Analysis and visualization of gene expression data using self-organizing maps. Neural Networks, 15(8–9): 953–966.CrossRef Nikkilä, J. et al. 2002. Analysis and visualization of gene expression data using self-organizing maps. Neural Networks, 15(8–9): 953–966.CrossRef
38.
Zurück zum Zitat Peterson, C. and Ringner, M. 2003. Analyzing tumor gene expression profiles. Artificial Intelligence in Medicine, 28: 59–74.CrossRef Peterson, C. and Ringner, M. 2003. Analyzing tumor gene expression profiles. Artificial Intelligence in Medicine, 28: 59–74.CrossRef
39.
Zurück zum Zitat Principe, J., Euliano, N. and Lefebvre, W. 2000. Neural and Adaptive Systems: Fundamentals Through Simulations. New York: Wiley. Principe, J., Euliano, N. and Lefebvre, W. 2000. Neural and Adaptive Systems: Fundamentals Through Simulations. New York: Wiley.
40.
Zurück zum Zitat Rosenblatt, F. 1958. The perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review, 65(6): 386–408.CrossRefMathSciNet Rosenblatt, F. 1958. The perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review, 65(6): 386–408.CrossRefMathSciNet
41.
Zurück zum Zitat Sakamoto, E. and Iba, H. 2001. Inferring a system of differential equations for a gene regulatory network by using genetic programming. Proceedings of the 2001 Congress on Evolutionary Computation, Volume: 1, 27–30 May 2001. 720–726. Sakamoto, E. and Iba, H. 2001. Inferring a system of differential equations for a gene regulatory network by using genetic programming. Proceedings of the 2001 Congress on Evolutionary Computation, Volume: 1, 27–30 May 2001. 720–726.
42.
Zurück zum Zitat Sawa, T. and Ohno-Machado, L. 2003. A neural network-based similarity index for clustering DNA microarray data. Computers in Biology and Medicine, 33: 1–15.CrossRef Sawa, T. and Ohno-Machado, L. 2003. A neural network-based similarity index for clustering DNA microarray data. Computers in Biology and Medicine, 33: 1–15.CrossRef
43.
Zurück zum Zitat Spellman, P. et al. 1998. Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell, 9: 3273–3297. Spellman, P. et al. 1998. Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell, 9: 3273–3297.
44.
Zurück zum Zitat Spicker, J. et al. 2002. Neural network predicts sequence of TP53 gene based on DNA chip. Bioinformatics, 18(8): 1133–1134.CrossRef Spicker, J. et al. 2002. Neural network predicts sequence of TP53 gene based on DNA chip. Bioinformatics, 18(8): 1133–1134.CrossRef
45.
Zurück zum Zitat Syeda-Mahmood, T. 2003. Clustering time-varying gene expression profiles using scale-space signals. Proceedings of the 2003 IEEE Computer Society Bioinformatics Conference, Stanford, CA: USA, 11–14 Aug. 2003. 48–56. Syeda-Mahmood, T. 2003. Clustering time-varying gene expression profiles using scale-space signals. Proceedings of the 2003 IEEE Computer Society Bioinformatics Conference, Stanford, CA: USA, 11–14 Aug. 2003. 48–56.
46.
Zurück zum Zitat Tabus, I. and Astola, J. 2003. Clustering the non-uniformly sampled time series of gene expression data. Proceedings of the Seventh International Symposium on Signal Processing and Its Applications, Volume: 2, 1–4 July 2003. 61–64. Tabus, I. and Astola, J. 2003. Clustering the non-uniformly sampled time series of gene expression data. Proceedings of the Seventh International Symposium on Signal Processing and Its Applications, Volume: 2, 1–4 July 2003. 61–64.
47.
Zurück zum Zitat Tabus, I., Giurcaneanu, C. and Astola, J. 2004. Genetic networks inferred from time series of gene expression data. First International Symposium on Control, Communications and Signal Processing, Hammamet: Tunisia, 21–24 March 2004. 755–758. Tabus, I., Giurcaneanu, C. and Astola, J. 2004. Genetic networks inferred from time series of gene expression data. First International Symposium on Control, Communications and Signal Processing, Hammamet: Tunisia, 21–24 March 2004. 755–758.
48.
Zurück zum Zitat Tan, A. and Gilbert, D. 2003. Ensemble machine learning on gene expression data for cancer classification. Applied Bioinformatics, 2(3 Suppl.): S75–S83. Tan, A. and Gilbert, D. 2003. Ensemble machine learning on gene expression data for cancer classification. Applied Bioinformatics, 2(3 Suppl.): S75–S83.
49.
Zurück zum Zitat Taylor, J. et al. 2002. Application of metabolomics to plant genotype discrimination using statistics and machine learning. Bioinformatics, 18(Suppl. 2): 241–248. Taylor, J. et al. 2002. Application of metabolomics to plant genotype discrimination using statistics and machine learning. Bioinformatics, 18(Suppl. 2): 241–248.
50.
Zurück zum Zitat Theodoridis, S. and Koutroumbas, K. 2003. Pattern Recognition (2nd ed.). San Diego, CA: Academic Press. Theodoridis, S. and Koutroumbas, K. 2003. Pattern Recognition (2nd ed.). San Diego, CA: Academic Press.
51.
Zurück zum Zitat Veiga, D. et al. 2008. Predicting transcriptional regulatory interactions with artificial neural networks applied to E. coli multidrug resistance efflux pumps. BMC Microbiology, 8:101. doi: 10.1186/1471-2180-8-101. Veiga, D. et al. 2008. Predicting transcriptional regulatory interactions with artificial neural networks applied to E. coli multidrug resistance efflux pumps. BMC Microbiology, 8:101. doi: 10.1186/1471-2180-8-101.
52.
Zurück zum Zitat Vogl, T. et al. 1998. Accelerating the convergence of the backpropagation method. Biological Cybernetics, 59: 257–263.CrossRef Vogl, T. et al. 1998. Accelerating the convergence of the backpropagation method. Biological Cybernetics, 59: 257–263.CrossRef
53.
Zurück zum Zitat Widrow, B. 1959. Generalization and information storage in networks of adaline neurons. In Yovits, M.C., Jacobi, G.T. and Goldstein, G.D. (Eds.), Self-Organizing Systems. Washington, DC: Spartan, 435–461. Widrow, B. 1959. Generalization and information storage in networks of adaline neurons. In Yovits, M.C., Jacobi, G.T. and Goldstein, G.D. (Eds.), Self-Organizing Systems. Washington, DC: Spartan, 435–461.
54.
Zurück zum Zitat Wolkenhauer, O. 2002. Mathematical modeling in the post-genome era: understanding genome expression and regulation-a system theoretic approach. BioSystems, 65: 1–18.CrossRef Wolkenhauer, O. 2002. Mathematical modeling in the post-genome era: understanding genome expression and regulation-a system theoretic approach. BioSystems, 65: 1–18.CrossRef
55.
Zurück zum Zitat Wu, F., Zhang, W. and Kusalik, A. 2003. Determination of the minimum sample size in microarray experiments to cluster genes using k-means clustering. Proceedings of the Third IEEE Symposium on Bioinformatics and Bioengineering, Bethesda, Maryland: USA, 10–12 March 2003. 401–406. Wu, F., Zhang, W. and Kusalik, A. 2003. Determination of the minimum sample size in microarray experiments to cluster genes using k-means clustering. Proceedings of the Third IEEE Symposium on Bioinformatics and Bioengineering, Bethesda, Maryland: USA, 10–12 March 2003. 401–406.
56.
Zurück zum Zitat Yeang, C. and Jaakkola, T. 2003. Time series analysis of gene expression and location data. Proceedings of the Third IEEE Symposium on Bioinformatics and Bioengineering, Bethesda, Maryland: USA, 10–12 March 2003. 305–312. Yeang, C. and Jaakkola, T. 2003. Time series analysis of gene expression and location data. Proceedings of the Third IEEE Symposium on Bioinformatics and Bioengineering, Bethesda, Maryland: USA, 10–12 March 2003. 305–312.
57.
Zurück zum Zitat Yeung, K. and Ruzzo, W. 2001. Principal component analysis for clustering gene expression data. Bioinformatics, 17(9): 763–774.CrossRef Yeung, K. and Ruzzo, W. 2001. Principal component analysis for clustering gene expression data. Bioinformatics, 17(9): 763–774.CrossRef
58.
Zurück zum Zitat Yoshioka, T. and Ishii, S. 2002. Clustering for time-series gene expression data using mixture of constrained PCAS. Neural Information Processing, ICONIP ‘02. 2239–2243 (v5). Yoshioka, T. and Ishii, S. 2002. Clustering for time-series gene expression data using mixture of constrained PCAS. Neural Information Processing, ICONIP ‘02. 2239–2243 (v5).
59.
Zurück zum Zitat Yukalov, V. 2000. Self-similar extrapolation of asymptotic series and forecasting for time series. Modern Physics Letters B, 14 (22/23): 791–900.MATHCrossRef Yukalov, V. 2000. Self-similar extrapolation of asymptotic series and forecasting for time series. Modern Physics Letters B, 14 (22/23): 791–900.MATHCrossRef
60.
Zurück zum Zitat Zhang, L., Zhang, A. and Ramanathan, M. 2003. Fourier harmonic approach for visualizing temporal patterns of gene expression data. Proceedings of the 2003 IEEE Computer Society Bioinformatics Conference, Stanford, CA: USA, 11–14 Aug. 2003. 137–147. Zhang, L., Zhang, A. and Ramanathan, M. 2003. Fourier harmonic approach for visualizing temporal patterns of gene expression data. Proceedings of the 2003 IEEE Computer Society Bioinformatics Conference, Stanford, CA: USA, 11–14 Aug. 2003. 137–147.
Metadaten
Titel
Hybrid Machine Learning Model for Continuous Microarray Time Series
verfasst von
Sio-Iong Ao
Copyright-Jahr
2010
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-90-481-3177-8_5