Skip to main content
Erschienen in: Microsystem Technologies 10/2018

30.12.2017 | Technical Paper

Hybrid micromolding of silver micro fiber doped electrically conductive elastomeric composite polymer for flexible sensors and electronic devices

verfasst von: Shreyas Shah, MD Nahin Islam Shiblee, Sajjad Husain Mir, Larry Akio Nagahara, Thomas Thundat, Praveen Kumar Sekhar, Masaru Kawakami, Hidemitsu Furukawa, Ajit Khosla

Erschienen in: Microsystem Technologies | Ausgabe 10/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Development of conductive nanocomposites is critical to realize flexible electronics on diverse substrates. Tuning the electrical and mechanical characteristics of these nanocomposites can enable a spectrum of applications. Herein, we demonstrate a robust microfabrication protocol to implement electrically conductive polymer by doping polydimethylsiloxane (PDMS) with silver fibers, with potential applications in wearable devices, MEMS, and microfluidics. The conductive polymer was made by mixing silver fibers into uncured PDMS matrix. The prepared mixture was micromolded by three dimension (3D) printed master using soft lithography technique. Serpentine and spiral like microstructures were embedded on the nonconductive layer of PDMS. The SEM images show uniform dispersion of silver fibers in the composites. The percolation threshold for the prepared composite was found to be 25 wt%. Resistivity of the conductive elastomeric composite at 25 wt% was 0.013 Ω cm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Brigandi PJ, Cogen JM, Pearson RA (2014) Electrically conductive multiphase polymer blend carbon-based composites. Polym Eng Sci 54(1):1–16CrossRef Brigandi PJ, Cogen JM, Pearson RA (2014) Electrically conductive multiphase polymer blend carbon-based composites. Polym Eng Sci 54(1):1–16CrossRef
Zurück zum Zitat Chung D, Khosla A, Gray BL (2014) Screen printable flexible conductive nanocomposite polymer with applications to wearable sensors. In: Proceedings of SPIE 9060, nanosensors, biosensors, and Info-Tech sensors and systems 2014, 90600U. https://doi.org/10.1117/12.2046548 Chung D, Khosla A, Gray BL (2014) Screen printable flexible conductive nanocomposite polymer with applications to wearable sensors. In: Proceedings of SPIE 9060, nanosensors, biosensors, and Info-Tech sensors and systems 2014, 90600U. https://​doi.​org/​10.​1117/​12.​2046548
Zurück zum Zitat Das NC, Chaki TK, Khastgir D (2002) Effect of axial stretching on electrical resistivity of short carbon fibre and carbon black filled conductive rubber composites. Polym Int 51(2):156–163CrossRef Das NC, Chaki TK, Khastgir D (2002) Effect of axial stretching on electrical resistivity of short carbon fibre and carbon black filled conductive rubber composites. Polym Int 51(2):156–163CrossRef
Zurück zum Zitat Gonzalez M, Axisa F, Bulcke MV, Brosteaux D, Vandevelde B, Vanfleteren J (2008) Design of metal interconnects for stretchable electronic circuits. Microelectron Reliab 48(6):825–832CrossRef Gonzalez M, Axisa F, Bulcke MV, Brosteaux D, Vandevelde B, Vanfleteren J (2008) Design of metal interconnects for stretchable electronic circuits. Microelectron Reliab 48(6):825–832CrossRef
Zurück zum Zitat Khosla A, Korčok JL, Gray BL, Leznoff DB, Herchenroeder JW, Miller D, Chen Z (2010) Fabrication and testing of integrated permanent micromagnets for microfluidic systems. In: Proceedings of SPIE 7593, microfluidics, BioMEMS, and medical microsystems VIII, 759316. https://doi.org/10.1117/12.840942 Khosla A, Korčok JL, Gray BL, Leznoff DB, Herchenroeder JW, Miller D, Chen Z (2010) Fabrication and testing of integrated permanent micromagnets for microfluidic systems. In: Proceedings of SPIE 7593, microfluidics, BioMEMS, and medical microsystems VIII, 759316. https://​doi.​org/​10.​1117/​12.​840942
Zurück zum Zitat Khosla A, Hilbich D, Drewbrook C, Chung D, Gray BL (2011) Large scale micropatterning of multi-walled carbon nanotube/polydimethylsiloxane nanocomposite polymer on highly flexible 12×24 inch substrates. In: Proceedings SPIE 7926, Micromachining and Microfabrication Process Technology XVI, 79260L. https://doi.org/10.1117/12.876738 Khosla A, Hilbich D, Drewbrook C, Chung D, Gray BL (2011) Large scale micropatterning of multi-walled carbon nanotube/polydimethylsiloxane nanocomposite polymer on highly flexible 12×24 inch substrates. In: Proceedings SPIE 7926, Micromachining and Microfabrication Process Technology XVI, 79260L. https://​doi.​org/​10.​1117/​12.​876738
Zurück zum Zitat Kim DH, Ahn JH, Choi WM, Kim HS, Kim TH, Song J, Huang YY, Liu Z, Lu C, Rogers JA (2008) Stretchable and foldable silicon integrated circuits. Science 320(5875):507–511CrossRef Kim DH, Ahn JH, Choi WM, Kim HS, Kim TH, Song J, Huang YY, Liu Z, Lu C, Rogers JA (2008) Stretchable and foldable silicon integrated circuits. Science 320(5875):507–511CrossRef
Zurück zum Zitat Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35(11):1350–1375CrossRef Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35(11):1350–1375CrossRef
Zurück zum Zitat Li A, Khosla A; Drewbrook C, Gray BL (2011) Fabrication and testing of thermally responsive hydrogel-based actuators using polymer heater elements for flexible microvalves. In: Proceedings of SPIE 7929, microfluidics, BioMEMS, and medical microsystems IX, 79290G. https://doi.org/10.1117/12.873197 Li A, Khosla A; Drewbrook C, Gray BL (2011) Fabrication and testing of thermally responsive hydrogel-based actuators using polymer heater elements for flexible microvalves. In: Proceedings of SPIE 7929, microfluidics, BioMEMS, and medical microsystems IX, 79290G. https://​doi.​org/​10.​1117/​12.​873197
Zurück zum Zitat Ling J, Zhai W, Feng W, Shen B, Zhang J, Zheng WG (2013) Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. ACS Appl Mat Interface 5(7):2677–2684. https://doi.org/10.1021/am303289m CrossRef Ling J, Zhai W, Feng W, Shen B, Zhang J, Zheng WG (2013) Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. ACS Appl Mat Interface 5(7):2677–2684. https://​doi.​org/​10.​1021/​am303289m CrossRef
Zurück zum Zitat Mondal S, Ganguly S, Rahaman M, Aldalbahi A, Chaki TK, Khastgir D, Das NC (2016) A strategy to achieve enhanced electromagnetic interference shielding at low concentration with a new generation of conductive carbon black in a chlorinated polyethylene elastomeric matrix. Phys Chem Chem Phys 18(35):24591–24599CrossRef Mondal S, Ganguly S, Rahaman M, Aldalbahi A, Chaki TK, Khastgir D, Das NC (2016) A strategy to achieve enhanced electromagnetic interference shielding at low concentration with a new generation of conductive carbon black in a chlorinated polyethylene elastomeric matrix. Phys Chem Chem Phys 18(35):24591–24599CrossRef
Zurück zum Zitat Ozhikandathil J, Khosla A, Packirisamy M (2015) Electrically conducting PDMS nanocomposite using in situ reduction of gold nanostructures and mechanical stimulation of carbon nanotubes and silver nanoparticles. ECS J Solid State Sci Technol 4(10):S3048–S3052. https://doi.org/10.1149/2.0091510jss CrossRef Ozhikandathil J, Khosla A, Packirisamy M (2015) Electrically conducting PDMS nanocomposite using in situ reduction of gold nanostructures and mechanical stimulation of carbon nanotubes and silver nanoparticles. ECS J Solid State Sci Technol 4(10):S3048–S3052. https://​doi.​org/​10.​1149/​2.​0091510jss CrossRef
Zurück zum Zitat Packirisamy M, Ozhikandathil J, Khosla A (2017) Methods for fabricating morphologically transformed nano-structures (mtns) and tunable nanocomposite polymer materials, and devices using such materials. US Patent Application No. 14/776,833, 17 Mar 2014 Packirisamy M, Ozhikandathil J, Khosla A (2017) Methods for fabricating morphologically transformed nano-structures (mtns) and tunable nanocomposite polymer materials, and devices using such materials. US Patent Application No. 14/776,833, 17 Mar 2014
Zurück zum Zitat Sekhar PK et al (2017) A new low-temperature electrochemical hydrocarbon and NOx sensor. Sensors 17(12):2759CrossRef Sekhar PK et al (2017) A new low-temperature electrochemical hydrocarbon and NOx sensor. Sensors 17(12):2759CrossRef
Metadaten
Titel
Hybrid micromolding of silver micro fiber doped electrically conductive elastomeric composite polymer for flexible sensors and electronic devices
verfasst von
Shreyas Shah
MD Nahin Islam Shiblee
Sajjad Husain Mir
Larry Akio Nagahara
Thomas Thundat
Praveen Kumar Sekhar
Masaru Kawakami
Hidemitsu Furukawa
Ajit Khosla
Publikationsdatum
30.12.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 10/2018
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-017-3694-0

Weitere Artikel der Ausgabe 10/2018

Microsystem Technologies 10/2018 Zur Ausgabe

Neuer Inhalt