Skip to main content

2022 | OriginalPaper | Buchkapitel

Hybrid Nanostructures for Biomedical Applications

verfasst von : R. Rajakumari, Abhimanyu Tharayil, Sabu Thomas, Nandakumar Kalarikkal

Erschienen in: Hybrid Phosphor Materials

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanoparticles have great potential in the biomedical field owing to its superior properties. Hybrid nanomaterials can be used to perform both diagnostic and therapeutic function by a single system. These materials will have the synergistic beneficial features of the different nanomaterials incorporated. In this chapter, we have categorised the inorganic/organic hybrid nanomaterials which are being developed in the field of biomedical applications. In addition, summarized the most recently reported hybrid nanomaterials, nanoparticles and nanocomposites with their synthesis methods and physicochemical properties. This chapter will summarize the recent advances in the synthesis, design and applications of hybrid nanomaterials in the biomedical field. The applications especially the imaging, drug delivery and cancer therapeutic applications will be highlighted.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Qiu, L.Y., Bae, Y.H.: Polymer architecture and drug delivery. Pharm. Res. 23, 1–30 (2006)CrossRef Qiu, L.Y., Bae, Y.H.: Polymer architecture and drug delivery. Pharm. Res. 23, 1–30 (2006)CrossRef
2.
Zurück zum Zitat Huebsch, N., Mooney, D.J.: Inspiration and application in the evolution of biomaterials. Nature 462, 426–432 (2009)CrossRef Huebsch, N., Mooney, D.J.: Inspiration and application in the evolution of biomaterials. Nature 462, 426–432 (2009)CrossRef
3.
Zurück zum Zitat Bobo, D., Robinson, K.J., Islam, J., Thurecht, K.J., Corrie, S.R.: Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm. Res. 33, 2373–2387 (2016)CrossRef Bobo, D., Robinson, K.J., Islam, J., Thurecht, K.J., Corrie, S.R.: Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm. Res. 33, 2373–2387 (2016)CrossRef
4.
Zurück zum Zitat Allen, T.M., Cullis, P.R.: Drug delivery systems: entering the mainstream. Science 303(80), 1818–1822 (2004) Allen, T.M., Cullis, P.R.: Drug delivery systems: entering the mainstream. Science 303(80), 1818–1822 (2004)
5.
Zurück zum Zitat Ramakrishna, S., Mayer, J., Wintermantel, E., Leong, K.W.: Biomedical applications of polymer-composite materials: a review. Compos. Sci. Technol. 61, 1189–1224 (2001)CrossRef Ramakrishna, S., Mayer, J., Wintermantel, E., Leong, K.W.: Biomedical applications of polymer-composite materials: a review. Compos. Sci. Technol. 61, 1189–1224 (2001)CrossRef
6.
Zurück zum Zitat Nicole, L., Rozes, L., Sanchez, C.: Integrative approaches to hybrid multifunctional materials: from multidisciplinary research to applied technologies. Adv. Mater. 22, 3208–3214 (2010)CrossRef Nicole, L., Rozes, L., Sanchez, C.: Integrative approaches to hybrid multifunctional materials: from multidisciplinary research to applied technologies. Adv. Mater. 22, 3208–3214 (2010)CrossRef
7.
Zurück zum Zitat Mir, S.H., Nagahara, L.A., Thundat, T., Mokarian-Tabari, P., Furukawa, H., Khosla, A.: Organic-inorganic hybrid functional materials: an integrated platform for applied technologies. J. Electrochem. Soc. 165, B3137 (2018)CrossRef Mir, S.H., Nagahara, L.A., Thundat, T., Mokarian-Tabari, P., Furukawa, H., Khosla, A.: Organic-inorganic hybrid functional materials: an integrated platform for applied technologies. J. Electrochem. Soc. 165, B3137 (2018)CrossRef
8.
Zurück zum Zitat Ling, D., Park, W., Park, Y.I., Lee, N., Li, F., Song, C., et al.: Multiple‐interaction ligands inspired by mussel adhesive protein: synthesis of highly stable and biocompatible nanoparticles. Angew. Chemie. Int. Ed. 50, 11360–11365 (2011) Ling, D., Park, W., Park, Y.I., Lee, N., Li, F., Song, C., et al.: Multiple‐interaction ligands inspired by mussel adhesive protein: synthesis of highly stable and biocompatible nanoparticles. Angew. Chemie. Int. Ed. 50, 11360–11365 (2011)
9.
Zurück zum Zitat Liu, H., Webster, T.J.: Mechanical properties of dispersed ceramic nanoparticles in polymer composites for orthopedic applications. Int. J. Nanomed. 5, 299 (2010) Liu, H., Webster, T.J.: Mechanical properties of dispersed ceramic nanoparticles in polymer composites for orthopedic applications. Int. J. Nanomed. 5, 299 (2010)
10.
Zurück zum Zitat Hong, Z., Reis, R.L., Mano, J.F.: Preparation and in-vitro characterization of scaffolds of poly (l-lactic acid) containing bioactive glass ceramic nanoparticles. Acta Biomater. 4, 1297–1306 (2008)CrossRef Hong, Z., Reis, R.L., Mano, J.F.: Preparation and in-vitro characterization of scaffolds of poly (l-lactic acid) containing bioactive glass ceramic nanoparticles. Acta Biomater. 4, 1297–1306 (2008)CrossRef
12.
Zurück zum Zitat Tsuru, K., Hayakawa, S., Osaka, A.: Medical Applications of Hybrid Materials. Weinheim. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2007) Tsuru, K., Hayakawa, S., Osaka, A.: Medical Applications of Hybrid Materials. Weinheim. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2007)
14.
Zurück zum Zitat Chimene, D., Alge, D.L., Gaharwar, A.K.: Two-dimensional nanomaterials for biomedical applications: emerging trends and future prospects. Adv. Mater. 27, 7261–7284 (2015)CrossRef Chimene, D., Alge, D.L., Gaharwar, A.K.: Two-dimensional nanomaterials for biomedical applications: emerging trends and future prospects. Adv. Mater. 27, 7261–7284 (2015)CrossRef
15.
Zurück zum Zitat Adnan, M.M., Dalod, A.R.M., Balci, M.H., Glaum, J., Einarsrud, M.-A.: In-situ synthesis of hybrid inorganic–polymer nanocomposites. Polymers (Basel) 10, 1129 (2018)CrossRef Adnan, M.M., Dalod, A.R.M., Balci, M.H., Glaum, J., Einarsrud, M.-A.: In-situ synthesis of hybrid inorganic–polymer nanocomposites. Polymers (Basel) 10, 1129 (2018)CrossRef
16.
Zurück zum Zitat Sanchez, C., Ribot, F., Lebeau, B.: Molecular design of hybrid organic-inorganic nanocomposites synthesized via sol-gel chemistry. J. Mater. Chem. 9, 35–44 (1999)CrossRef Sanchez, C., Ribot, F., Lebeau, B.: Molecular design of hybrid organic-inorganic nanocomposites synthesized via sol-gel chemistry. J. Mater. Chem. 9, 35–44 (1999)CrossRef
17.
Zurück zum Zitat Daniel, M.-C., Astruc, D.: Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004)CrossRef Daniel, M.-C., Astruc, D.: Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004)CrossRef
18.
Zurück zum Zitat Magdolenova, Z., Collins, A., Kumar, A., Dhawan, A., Stone, V., Dusinska, M.: Mechanisms of genotoxicity. A review of in-vitro and in-vivo studies with engineered nanoparticles. Nanotoxicology 8, 233–278 (2014) Magdolenova, Z., Collins, A., Kumar, A., Dhawan, A., Stone, V., Dusinska, M.: Mechanisms of genotoxicity. A review of in-vitro and in-vivo studies with engineered nanoparticles. Nanotoxicology 8, 233–278 (2014)
19.
Zurück zum Zitat Kelly, K.L., Coronado, E., Zhao, L.L., Schatz, G.C.: The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment (2003) Kelly, K.L., Coronado, E., Zhao, L.L., Schatz, G.C.: The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment (2003)
20.
Zurück zum Zitat El-Sayed, M.A.: Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc. Chem. Res. 37, 326–333 (2004)CrossRef El-Sayed, M.A.: Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc. Chem. Res. 37, 326–333 (2004)CrossRef
21.
Zurück zum Zitat Zhao, N., Yan, L., Zhao, X., Chen, X., Li, A., Zheng, D., et al.: Versatile types of organic/inorganic nanohybrids: from strategic design to biomedical applications. Chem. Rev. 119, 1666–1762 (2018)CrossRef Zhao, N., Yan, L., Zhao, X., Chen, X., Li, A., Zheng, D., et al.: Versatile types of organic/inorganic nanohybrids: from strategic design to biomedical applications. Chem. Rev. 119, 1666–1762 (2018)CrossRef
22.
Zurück zum Zitat Vallet-Regí, M., Colilla, M., González, B.: Medical applications of organic–inorganic hybrid materials within the field of silica-based bioceramics. Chem. Soc. Rev. 40, 596–607 (2011)CrossRef Vallet-Regí, M., Colilla, M., González, B.: Medical applications of organic–inorganic hybrid materials within the field of silica-based bioceramics. Chem. Soc. Rev. 40, 596–607 (2011)CrossRef
23.
Zurück zum Zitat Oun, A.A., Shankar, S., Rhim, J.-W.: Multifunctional nanocellulose/metal and metal oxide nanoparticle hybrid nanomaterials. Crit. Rev. Food Sci. Nutr. 60, 435–460 (2020)CrossRef Oun, A.A., Shankar, S., Rhim, J.-W.: Multifunctional nanocellulose/metal and metal oxide nanoparticle hybrid nanomaterials. Crit. Rev. Food Sci. Nutr. 60, 435–460 (2020)CrossRef
24.
Zurück zum Zitat Liu, X., Zhang, Q., Knoll, W., Liedberg, B., Wang, Y.: Rational design of functional peptide-gold hybrid nanomaterials for molecular interactions. Adv. Mater. 32, 2000866 (2020)CrossRef Liu, X., Zhang, Q., Knoll, W., Liedberg, B., Wang, Y.: Rational design of functional peptide-gold hybrid nanomaterials for molecular interactions. Adv. Mater. 32, 2000866 (2020)CrossRef
25.
Zurück zum Zitat Makvandi, P., Wang, C., Zare, E.N., Borzacchiello, A., Niu, L., Tay, F.R.: Metal‐based nanomaterials in biomedical applications: Antimicrobial activity and cytotoxicity aspects. Adv. Funct. Mater. 1910021 (2020) Makvandi, P., Wang, C., Zare, E.N., Borzacchiello, A., Niu, L., Tay, F.R.: Metal‐based nanomaterials in biomedical applications: Antimicrobial activity and cytotoxicity aspects. Adv. Funct. Mater. 1910021 (2020)
26.
Zurück zum Zitat Park, W., Shin, H., Choi, B., Rhim, W.-K., Na, K., Han, D.K.: Advanced hybrid nanomaterials for biomedical applications. Prog. Mater. Sci. 100686 (2020) Park, W., Shin, H., Choi, B., Rhim, W.-K., Na, K., Han, D.K.: Advanced hybrid nanomaterials for biomedical applications. Prog. Mater. Sci. 100686 (2020)
27.
Zurück zum Zitat Xiao, M.-C., Chou, Y.-H., Hung, Y.-N., Hu, S.-H., Chiang, W.-H.: Hybrid polymeric nanoparticles with high zoledronic acid payload and proton sponge-triggered rapid drug release for anticancer applications. Mater. Sci. Eng. C 116, 111277 (2020) Xiao, M.-C., Chou, Y.-H., Hung, Y.-N., Hu, S.-H., Chiang, W.-H.: Hybrid polymeric nanoparticles with high zoledronic acid payload and proton sponge-triggered rapid drug release for anticancer applications. Mater. Sci. Eng. C 116, 111277 (2020)
28.
Zurück zum Zitat Pieretti, J.C., Rolim, W.R., Ferreira, F.F., Lombello, C.B., Nascimento, M.H.M., Seabra, A.B.: Synthesis, characterization, and cytotoxicity of Fe3O4@Ag hybrid nanoparticles: promising applications in cancer treatment. J. Clust. Sci. 31, 535–547 (2020)CrossRef Pieretti, J.C., Rolim, W.R., Ferreira, F.F., Lombello, C.B., Nascimento, M.H.M., Seabra, A.B.: Synthesis, characterization, and cytotoxicity of Fe3O4@Ag hybrid nanoparticles: promising applications in cancer treatment. J. Clust. Sci. 31, 535–547 (2020)CrossRef
29.
Zurück zum Zitat Kango, S., Kalia, S., Celli, A., Njuguna, J., Habibi, Y., Kumar, R.: Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—a review. Prog. Polym. Sci. 38, 1232–1261 (2013)CrossRef Kango, S., Kalia, S., Celli, A., Njuguna, J., Habibi, Y., Kumar, R.: Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—a review. Prog. Polym. Sci. 38, 1232–1261 (2013)CrossRef
30.
Zurück zum Zitat Xie, Y., Hill, C.A.S., Xiao, Z., Militz, H., Mai, C.: Silane coupling agents used for natural fiber/polymer composites: a review. Compos. Part A. Appl. Sci. Manuf. 41, 806–819 (2010)CrossRef Xie, Y., Hill, C.A.S., Xiao, Z., Militz, H., Mai, C.: Silane coupling agents used for natural fiber/polymer composites: a review. Compos. Part A. Appl. Sci. Manuf. 41, 806–819 (2010)CrossRef
31.
Zurück zum Zitat Hideshima, S., Hinou, H., Ebihara, D., Sato, R., Kuroiwa, S., Nakanishi, T., et al.: Attomolar detection of influenza A virus hemagglutinin human H1 and avian H5 using glycan-blotted field effect transistor biosensor. Anal. Chem. 85, 5641–5644 (2013)CrossRef Hideshima, S., Hinou, H., Ebihara, D., Sato, R., Kuroiwa, S., Nakanishi, T., et al.: Attomolar detection of influenza A virus hemagglutinin human H1 and avian H5 using glycan-blotted field effect transistor biosensor. Anal. Chem. 85, 5641–5644 (2013)CrossRef
32.
Zurück zum Zitat Basuki, J.S., Esser, L., Zetterlund, P.B., Whittaker, M.R., Boyer, C., Davis, T.P.: Grafting of P (OEGA) onto magnetic nanoparticles using Cu(0) mediated polymerization: comparing grafting “from” and “to” approaches in the search for the optimal material design of nanoparticle MRI contrast agents. Macromolecules 46, 6038–6047 (2013)CrossRef Basuki, J.S., Esser, L., Zetterlund, P.B., Whittaker, M.R., Boyer, C., Davis, T.P.: Grafting of P (OEGA) onto magnetic nanoparticles using Cu(0) mediated polymerization: comparing grafting “from” and “to” approaches in the search for the optimal material design of nanoparticle MRI contrast agents. Macromolecules 46, 6038–6047 (2013)CrossRef
33.
Zurück zum Zitat Chatterjee, S., Karam, T.E., Rosu, C., Wang, C.-H., Youm, S.G., Li, X., et al.: Silica–conjugated polymer hybrid fluorescent nanoparticles: preparation by surface-initiated polymerization and spectroscopic studies. J. Phys. Chem. C 122, 6963–6975 (2018)CrossRef Chatterjee, S., Karam, T.E., Rosu, C., Wang, C.-H., Youm, S.G., Li, X., et al.: Silica–conjugated polymer hybrid fluorescent nanoparticles: preparation by surface-initiated polymerization and spectroscopic studies. J. Phys. Chem. C 122, 6963–6975 (2018)CrossRef
34.
Zurück zum Zitat Chen, H., Wang, G.D., Chuang, Y.-J., Zhen, Z., Chen, X., Biddinger, P., et al.: Nanoscintillator-mediated X-ray inducible photodynamic therapy for in-vivo cancer treatment. Nano. Lett. 15, 2249–2256 (2015)CrossRef Chen, H., Wang, G.D., Chuang, Y.-J., Zhen, Z., Chen, X., Biddinger, P., et al.: Nanoscintillator-mediated X-ray inducible photodynamic therapy for in-vivo cancer treatment. Nano. Lett. 15, 2249–2256 (2015)CrossRef
35.
Zurück zum Zitat Tong, S., Hou, S., Zheng, Z., Zhou, J., Bao, G.: Coating optimization of superparamagnetic iron oxide nanoparticles for high T2 relaxivity. Nano. Lett. 10, 4607–4613 (2010)CrossRef Tong, S., Hou, S., Zheng, Z., Zhou, J., Bao, G.: Coating optimization of superparamagnetic iron oxide nanoparticles for high T2 relaxivity. Nano. Lett. 10, 4607–4613 (2010)CrossRef
36.
Zurück zum Zitat Raula, J., Shan, J., Nuopponen, M., Niskanen, A., Jiang, H., Kauppinen, E.I., et al.: Synthesis of gold nanoparticles grafted with a thermoresponsive polymer by surface-induced reversible-addition-fragmentation chain-transfer polymerization. Langmuir 19, 3499–3504 (2003)CrossRef Raula, J., Shan, J., Nuopponen, M., Niskanen, A., Jiang, H., Kauppinen, E.I., et al.: Synthesis of gold nanoparticles grafted with a thermoresponsive polymer by surface-induced reversible-addition-fragmentation chain-transfer polymerization. Langmuir 19, 3499–3504 (2003)CrossRef
37.
Zurück zum Zitat Pfaff, A., Schallon, A., Ruhland, T.M., Majewski, A.P., Schmalz, H., Freitag, R., et al.: Magnetic and fluorescent glycopolymer hybrid nanoparticles for intranuclear optical imaging. Biomacromol 12, 3805–3811 (2011)CrossRef Pfaff, A., Schallon, A., Ruhland, T.M., Majewski, A.P., Schmalz, H., Freitag, R., et al.: Magnetic and fluorescent glycopolymer hybrid nanoparticles for intranuclear optical imaging. Biomacromol 12, 3805–3811 (2011)CrossRef
38.
Zurück zum Zitat Yan, J., Li, S., Cartieri, F., Wang, Z., Hitchens, T.K., Leonardo, J., et al.: Iron oxide nanoparticles with grafted polymeric analogue of dimethyl sulfoxide as potential magnetic resonance imaging contrast agents. ACS Appl. Mater. Interfaces 10, 21901–21908 (2018)CrossRef Yan, J., Li, S., Cartieri, F., Wang, Z., Hitchens, T.K., Leonardo, J., et al.: Iron oxide nanoparticles with grafted polymeric analogue of dimethyl sulfoxide as potential magnetic resonance imaging contrast agents. ACS Appl. Mater. Interfaces 10, 21901–21908 (2018)CrossRef
39.
Zurück zum Zitat Kievit, F.M., Veiseh, O., Bhattarai, N., Fang, C., Gunn, J.W., Lee, D., et al.: PEI–PEG–chitosan-copolymer-coated iron oxide nanoparticles for safe gene delivery: synthesis, complexation, and transfection. Adv. Funct. Mater. 19, 2244–2251 (2009)CrossRef Kievit, F.M., Veiseh, O., Bhattarai, N., Fang, C., Gunn, J.W., Lee, D., et al.: PEI–PEG–chitosan-copolymer-coated iron oxide nanoparticles for safe gene delivery: synthesis, complexation, and transfection. Adv. Funct. Mater. 19, 2244–2251 (2009)CrossRef
40.
Zurück zum Zitat Cole, A.J., David, A.E., Wang, J., Galbán, C.J., Hill, H.L., Yang, V.C.: Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting. Biomaterials 32, 2183–2193 (2011)CrossRef Cole, A.J., David, A.E., Wang, J., Galbán, C.J., Hill, H.L., Yang, V.C.: Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting. Biomaterials 32, 2183–2193 (2011)CrossRef
41.
Zurück zum Zitat Liong, M., Shao, H., Haun, J.B., Lee, H., Weissleder, R.: Carboxymethylated polyvinyl alcohol stabilizes doped ferrofluids for biological applications. Adv. Mater. 22, 5168–5172 (2010)CrossRef Liong, M., Shao, H., Haun, J.B., Lee, H., Weissleder, R.: Carboxymethylated polyvinyl alcohol stabilizes doped ferrofluids for biological applications. Adv. Mater. 22, 5168–5172 (2010)CrossRef
42.
Zurück zum Zitat Zhu, N., Ji, H., Yu, P., Niu, J., Farooq, M.U., Akram, M.W., et al.: Surface modification of magnetic iron oxide nanoparticles. Nanomaterials 8, 810 (2018)CrossRef Zhu, N., Ji, H., Yu, P., Niu, J., Farooq, M.U., Akram, M.W., et al.: Surface modification of magnetic iron oxide nanoparticles. Nanomaterials 8, 810 (2018)CrossRef
43.
Zurück zum Zitat Li, F., Lu, J., Kong, X., Hyeon, T., Ling, D.: Dynamic nanoparticle assemblies for biomedical applications. Adv Mater 29, 1605897 (2017)CrossRef Li, F., Lu, J., Kong, X., Hyeon, T., Ling, D.: Dynamic nanoparticle assemblies for biomedical applications. Adv Mater 29, 1605897 (2017)CrossRef
44.
Zurück zum Zitat Nie, Z., Petukhova, A., Kumacheva, E.: Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat. Nanotechnol. 5, 15–25 (2010)CrossRef Nie, Z., Petukhova, A., Kumacheva, E.: Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat. Nanotechnol. 5, 15–25 (2010)CrossRef
45.
Zurück zum Zitat Ling, D., Hackett, M.J., Hyeon, T.: Surface ligands in synthesis, modification, assembly and biomedical applications of nanoparticles. Nano. Today 9, 457–477 (2014)CrossRef Ling, D., Hackett, M.J., Hyeon, T.: Surface ligands in synthesis, modification, assembly and biomedical applications of nanoparticles. Nano. Today 9, 457–477 (2014)CrossRef
46.
Zurück zum Zitat Grzelczak, M., Vermant, J., Furst, E.M., Liz-Marzán, L.M.: Directed self-assembly of nanoparticles. ACS Nano 4, 3591–3605 (2010)CrossRef Grzelczak, M., Vermant, J., Furst, E.M., Liz-Marzán, L.M.: Directed self-assembly of nanoparticles. ACS Nano 4, 3591–3605 (2010)CrossRef
47.
Zurück zum Zitat Ling, D., Lee, N., Hyeon, T.: Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Acc. Chem. Res. 48, 1276–1285 (2015)CrossRef Ling, D., Lee, N., Hyeon, T.: Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Acc. Chem. Res. 48, 1276–1285 (2015)CrossRef
48.
Zurück zum Zitat Kim, J.S., Rieter, W.J., Taylor, K.M.L., An, H., Lin, W., Lin, W.: Self-assembled hybrid nanoparticles for cancer-specific multimodal imaging. J. Am. Chem. Soc. 129, 8962–8963 (2007)CrossRef Kim, J.S., Rieter, W.J., Taylor, K.M.L., An, H., Lin, W., Lin, W.: Self-assembled hybrid nanoparticles for cancer-specific multimodal imaging. J. Am. Chem. Soc. 129, 8962–8963 (2007)CrossRef
49.
Zurück zum Zitat Si, S., Raula, M., Paira, T.K., Mandal, T.K.: Reversible self-assembly of carboxylated peptide-functionalized gold nanoparticles driven by metal-ion coordination. Chem. Phys. Chem. 9, 1578–1584 (2008)CrossRef Si, S., Raula, M., Paira, T.K., Mandal, T.K.: Reversible self-assembly of carboxylated peptide-functionalized gold nanoparticles driven by metal-ion coordination. Chem. Phys. Chem. 9, 1578–1584 (2008)CrossRef
50.
Zurück zum Zitat Klajn, R., Olson, M.A., Wesson, P.J., Fang, L., Coskun, A., Trabolsi, A., et al.: Dynamic hook-and-eye nanoparticle sponges. Nat. Chem. 1, 733–738 (2009) Klajn, R., Olson, M.A., Wesson, P.J., Fang, L., Coskun, A., Trabolsi, A., et al.: Dynamic hook-and-eye nanoparticle sponges. Nat. Chem. 1, 733–738 (2009)
51.
Zurück zum Zitat Prasad, S., Achazi, K., Böttcher, C., Haag, R., Sharma, S.K.: Fabrication of nanostructures through self-assembly of non-ionic amphiphiles for biomedical applications. RSC Adv. 7, 22121–22132 (2017)CrossRef Prasad, S., Achazi, K., Böttcher, C., Haag, R., Sharma, S.K.: Fabrication of nanostructures through self-assembly of non-ionic amphiphiles for biomedical applications. RSC Adv. 7, 22121–22132 (2017)CrossRef
52.
Zurück zum Zitat Horcajada, P., Gref, R., Baati, T., Allan, P.K., Maurin, G., Couvreur, P., et al.: Metal–organic frameworks in biomedicine. Chem. Rev. 112, 1232–1268 (2012)CrossRef Horcajada, P., Gref, R., Baati, T., Allan, P.K., Maurin, G., Couvreur, P., et al.: Metal–organic frameworks in biomedicine. Chem. Rev. 112, 1232–1268 (2012)CrossRef
53.
Zurück zum Zitat He, C., Liu, D., Lin, W.: Nanomedicine applications of hybrid nanomaterials built from metal–ligand coordination bonds: nanoscale metal–organic frameworks and nanoscale coordination polymers. Chem. Rev. 115, 11079–11108 (2015)CrossRef He, C., Liu, D., Lin, W.: Nanomedicine applications of hybrid nanomaterials built from metal–ligand coordination bonds: nanoscale metal–organic frameworks and nanoscale coordination polymers. Chem. Rev. 115, 11079–11108 (2015)CrossRef
54.
Zurück zum Zitat Moon, H.R., Lim, D.-W., Suh, M.P.: Fabrication of metal nanoparticles in metal–organic frameworks. Chem. Soc. Rev. 42, 1807–1824 (2013)CrossRef Moon, H.R., Lim, D.-W., Suh, M.P.: Fabrication of metal nanoparticles in metal–organic frameworks. Chem. Soc. Rev. 42, 1807–1824 (2013)CrossRef
55.
Zurück zum Zitat Wang, L., Zheng, M., Xie, Z.: Nanoscale metal–organic frameworks for drug delivery: a conventional platform with new promise. J. Mater. Chem. B 6, 707–717 (2018)CrossRef Wang, L., Zheng, M., Xie, Z.: Nanoscale metal–organic frameworks for drug delivery: a conventional platform with new promise. J. Mater. Chem. B 6, 707–717 (2018)CrossRef
56.
Zurück zum Zitat Wu, M., Yang, Y.: Metal–organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv. Mater. 29, 1606134 (2017)CrossRef Wu, M., Yang, Y.: Metal–organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv. Mater. 29, 1606134 (2017)CrossRef
57.
Zurück zum Zitat Stock, N., Biswas, S.: Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112, 933–969 (2012)CrossRef Stock, N., Biswas, S.: Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112, 933–969 (2012)CrossRef
58.
Zurück zum Zitat Chen, B., Yang, Z., Zhu, Y., Xia, Y.: Zeolitic imidazolate framework materials: recent progress in synthesis and applications. J. Mater. Chem. A 2, 16811–16831 (2014)CrossRef Chen, B., Yang, Z., Zhu, Y., Xia, Y.: Zeolitic imidazolate framework materials: recent progress in synthesis and applications. J. Mater. Chem. A 2, 16811–16831 (2014)CrossRef
59.
Zurück zum Zitat Xuan, W., Zhu, C., Liu, Y., Cui, Y.: Mesoporous metal–organic framework materials. Chem. Soc. Rev. 41, 1677–1695 (2012)CrossRef Xuan, W., Zhu, C., Liu, Y., Cui, Y.: Mesoporous metal–organic framework materials. Chem. Soc. Rev. 41, 1677–1695 (2012)CrossRef
60.
Zurück zum Zitat Fang, J., Nakamura, H., Maeda, H.: The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 63, 136–151 (2011)CrossRef Fang, J., Nakamura, H., Maeda, H.: The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 63, 136–151 (2011)CrossRef
61.
Zurück zum Zitat Greish, K.: Enhanced Permeability and Retention (EPR) Effect for Anticancer Nanomedicine Drug Targeting, pp. 25–37. Springer, Cancer Nanotechnol. (2010) Greish, K.: Enhanced Permeability and Retention (EPR) Effect for Anticancer Nanomedicine Drug Targeting, pp. 25–37. Springer, Cancer Nanotechnol. (2010)
62.
Zurück zum Zitat Nichols, J.W., Bae, Y.H.E.P.R.: Evidence and fallacy. J. Control Release 190, 451–464 (2014)CrossRef Nichols, J.W., Bae, Y.H.E.P.R.: Evidence and fallacy. J. Control Release 190, 451–464 (2014)CrossRef
63.
Zurück zum Zitat Koh, K., Wong-Foy, A.G., Matzger, A.J.: A crystalline mesoporous coordination copolymer with high microporosity. Angew. Chemie. Int. Ed. 47, 677–680 (2008)CrossRef Koh, K., Wong-Foy, A.G., Matzger, A.J.: A crystalline mesoporous coordination copolymer with high microporosity. Angew. Chemie. Int. Ed. 47, 677–680 (2008)CrossRef
64.
Zurück zum Zitat Han, L., Qi, H., Zhang, D., Ye, G., Zhou, W., Hou, C., et al.: A facile and green synthesis of MIL-100 (Fe) with high-yield and its catalytic performance. New. J. Chem. 41, 13504–13509 (2017)CrossRef Han, L., Qi, H., Zhang, D., Ye, G., Zhou, W., Hou, C., et al.: A facile and green synthesis of MIL-100 (Fe) with high-yield and its catalytic performance. New. J. Chem. 41, 13504–13509 (2017)CrossRef
65.
Zurück zum Zitat Miller, M.A., Wang, C.-Y., Merrill, G.N.: Experimental and theoretical investigation into hydrogen storage via spillover in IRMOF-8. J. Phys. Chem. C 113, 3222–3231 (2009)CrossRef Miller, M.A., Wang, C.-Y., Merrill, G.N.: Experimental and theoretical investigation into hydrogen storage via spillover in IRMOF-8. J. Phys. Chem. C 113, 3222–3231 (2009)CrossRef
66.
Zurück zum Zitat Ishiwata, T., Furukawa, Y., Sugikawa, K., Kokado, K., Sada, K.: Transformation of metal–organic framework to polymer gel by cross-linking the organic ligands preorganized in metal–organic framework. J. Am. Chem. Soc. 135, 5427–5432 (2013)CrossRef Ishiwata, T., Furukawa, Y., Sugikawa, K., Kokado, K., Sada, K.: Transformation of metal–organic framework to polymer gel by cross-linking the organic ligands preorganized in metal–organic framework. J. Am. Chem. Soc. 135, 5427–5432 (2013)CrossRef
67.
Zurück zum Zitat Chen, X., Tong, R., Shi, Z., Yang, B., Liu, H., Ding, S., et al.: MOF nanoparticles with encapsulated autophagy inhibitor in controlled drug delivery system for antitumor. ACS Appl. Mater. Interfaces 10, 2328–2337 (2018)CrossRef Chen, X., Tong, R., Shi, Z., Yang, B., Liu, H., Ding, S., et al.: MOF nanoparticles with encapsulated autophagy inhibitor in controlled drug delivery system for antitumor. ACS Appl. Mater. Interfaces 10, 2328–2337 (2018)CrossRef
68.
Zurück zum Zitat He, C., Lu, K., Liu, D., Lin, W.: Nanoscale metal–organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J. Am. Chem. Soc. 136, 5181–5184 (2014)CrossRef He, C., Lu, K., Liu, D., Lin, W.: Nanoscale metal–organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J. Am. Chem. Soc. 136, 5181–5184 (2014)CrossRef
69.
Zurück zum Zitat Arun Kumar, S., Balasubramaniam, B., Bhunia, S., Jaiswal, M.K., Verma, K., Khademhosseini, A., et al.: Two‐dimensional metal organic frameworks for biomedical applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. e1674 (2020) Arun Kumar, S., Balasubramaniam, B., Bhunia, S., Jaiswal, M.K., Verma, K., Khademhosseini, A., et al.: Two‐dimensional metal organic frameworks for biomedical applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. e1674 (2020)
70.
Zurück zum Zitat Chae, D.W., Kim, B.C.: Characterization on polystyrene/zinc oxide nanocomposites prepared from solution mixing. Polym. Adv. Technol. 16, 846–850 (2005)CrossRef Chae, D.W., Kim, B.C.: Characterization on polystyrene/zinc oxide nanocomposites prepared from solution mixing. Polym. Adv. Technol. 16, 846–850 (2005)CrossRef
71.
Zurück zum Zitat Li, S., Meng Lin, M., Toprak, M.S., Kim, D.K., Muhammed, M.: Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano. Rev. 1, 5214 (2010)CrossRef Li, S., Meng Lin, M., Toprak, M.S., Kim, D.K., Muhammed, M.: Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano. Rev. 1, 5214 (2010)CrossRef
72.
Zurück zum Zitat Yuan, W., Wang, F., Chen, Z., Gao, C., Liu, P., Ding, Y., et al.: Efficient grafting of polypropylene onto silica nanoparticles and the properties of PP/PP-g-SiO2 nanocomposites. Polymer (Guildf) 151, 242–249 (2018)CrossRef Yuan, W., Wang, F., Chen, Z., Gao, C., Liu, P., Ding, Y., et al.: Efficient grafting of polypropylene onto silica nanoparticles and the properties of PP/PP-g-SiO2 nanocomposites. Polymer (Guildf) 151, 242–249 (2018)CrossRef
73.
Zurück zum Zitat Chen, W.-C., Lin, R.-C., Tseng, S.-M., Kuo, S.-W.: Minimizing the strong screening effect of polyhedral oligomeric silsesquioxane nanoparticles in hydrogen-bonded random copolymers. Polymers (Basel) 10, 303 (2018)CrossRef Chen, W.-C., Lin, R.-C., Tseng, S.-M., Kuo, S.-W.: Minimizing the strong screening effect of polyhedral oligomeric silsesquioxane nanoparticles in hydrogen-bonded random copolymers. Polymers (Basel) 10, 303 (2018)CrossRef
74.
Zurück zum Zitat Zhang, L., Su, H., Cai, J., Cheng, D., Ma, Y., Zhang, J., et al.: A multifunctional platform for tumor angiogenesis-targeted chemo-thermal therapy using polydopamine-coated gold nanorods. ACS Nano 10, 10404–10417 (2016)CrossRef Zhang, L., Su, H., Cai, J., Cheng, D., Ma, Y., Zhang, J., et al.: A multifunctional platform for tumor angiogenesis-targeted chemo-thermal therapy using polydopamine-coated gold nanorods. ACS Nano 10, 10404–10417 (2016)CrossRef
75.
Zurück zum Zitat Hu, W.-H., Huang, K.-W., Chiou, C.-W., Kuo, S.-W.: Complementary multiple hydrogen bonding interactions induce the self-assembly of supramolecular structures from heteronucleobase-functionalized benzoxazine and polyhedral oligomeric silsesquioxane nanoparticles. Macromolecules 45, 9020–9028 (2012)CrossRef Hu, W.-H., Huang, K.-W., Chiou, C.-W., Kuo, S.-W.: Complementary multiple hydrogen bonding interactions induce the self-assembly of supramolecular structures from heteronucleobase-functionalized benzoxazine and polyhedral oligomeric silsesquioxane nanoparticles. Macromolecules 45, 9020–9028 (2012)CrossRef
76.
Zurück zum Zitat Wu, Y.-C., Kuo, S.-W.: Self-assembly supramolecular structure through complementary multiple hydrogen bonding of heteronucleobase-multifunctionalized polyhedral oligomeric silsesquioxane (POSS) complexes. J. Mater. Chem. 22, 2982–2991 (2012)CrossRef Wu, Y.-C., Kuo, S.-W.: Self-assembly supramolecular structure through complementary multiple hydrogen bonding of heteronucleobase-multifunctionalized polyhedral oligomeric silsesquioxane (POSS) complexes. J. Mater. Chem. 22, 2982–2991 (2012)CrossRef
77.
Zurück zum Zitat Cheng, Y., Zeiger, D.N., Howarter, J.A., Zhang, X., Lin, N.J., Antonucci, J.M., et al.: In-situ formation of silver nanoparticles in photocrosslinking polymers. J. Biomed. Mater. Res. Part B. Appl. Biomater. 97, 124–131 (2011)CrossRef Cheng, Y., Zeiger, D.N., Howarter, J.A., Zhang, X., Lin, N.J., Antonucci, J.M., et al.: In-situ formation of silver nanoparticles in photocrosslinking polymers. J. Biomed. Mater. Res. Part B. Appl. Biomater. 97, 124–131 (2011)CrossRef
78.
Zurück zum Zitat Shen, X.-J., Yang, S., Shen, J.-X., Ma, J.-L., Wu, Y.-Q., Zeng, X.-L., et al.: Improved mechanical and antibacterial properties of silver-graphene oxide hybrid/polylactid acid composites by in-situ polymerization. Ind. Crops Prod. 130, 571–579 (2019)CrossRef Shen, X.-J., Yang, S., Shen, J.-X., Ma, J.-L., Wu, Y.-Q., Zeng, X.-L., et al.: Improved mechanical and antibacterial properties of silver-graphene oxide hybrid/polylactid acid composites by in-situ polymerization. Ind. Crops Prod. 130, 571–579 (2019)CrossRef
79.
Zurück zum Zitat Mohammad Shafiee, M.R., Sattari, A., Kargar, M., Ghashang, M.: MnO2/Cr2O3/PANI nanocomposites prepared by in-situ oxidation polymerization method: optical and electrical behaviors. J. Appl. Polym. Sci. 136, 47219 (2019)CrossRef Mohammad Shafiee, M.R., Sattari, A., Kargar, M., Ghashang, M.: MnO2/Cr2O3/PANI nanocomposites prepared by in-situ oxidation polymerization method: optical and electrical behaviors. J. Appl. Polym. Sci. 136, 47219 (2019)CrossRef
80.
Zurück zum Zitat Liu, C., Zhang, L., Liu, H., Cheng, K.: Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J. Control Release 266, 17–26 (2017)CrossRef Liu, C., Zhang, L., Liu, H., Cheng, K.: Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J. Control Release 266, 17–26 (2017)CrossRef
81.
Zurück zum Zitat Ramesan, M.T., Anjitha, T., Parvathi, K., Anilkumar, T., Mathew, G.: Nano zinc ferrite filler incorporated polyindole/poly (vinyl alcohol) blend: Preparation, characterization, and investigation of electrical properties. Adv. Polym. Technol. 37, 3639–3649 (2018)CrossRef Ramesan, M.T., Anjitha, T., Parvathi, K., Anilkumar, T., Mathew, G.: Nano zinc ferrite filler incorporated polyindole/poly (vinyl alcohol) blend: Preparation, characterization, and investigation of electrical properties. Adv. Polym. Technol. 37, 3639–3649 (2018)CrossRef
92.
Zurück zum Zitat Bejarano, J., Navarro-Marquez, M., Morales-Zavala, F., Morales, J.O., Garcia-Carvajal, I., Araya-Fuentes, E., et al.: Nanoparticles for diagnosis and therapy of atherosclerosis and myocardial infarction: evolution toward prospective theranostic approaches. Theranostics (2018). https://doi.org/10.7150/thno.26284CrossRef Bejarano, J., Navarro-Marquez, M., Morales-Zavala, F., Morales, J.O., Garcia-Carvajal, I., Araya-Fuentes, E., et al.: Nanoparticles for diagnosis and therapy of atherosclerosis and myocardial infarction: evolution toward prospective theranostic approaches. Theranostics (2018). https://​doi.​org/​10.​7150/​thno.​26284CrossRef
109.
120.
Zurück zum Zitat Zhao, Y., Liu, W., Tian, Y., Yang, Z., Wang, X., Zhang, Y., et al.: Anti-EGFR peptide-conjugated triangular gold nanoplates for computed tomography/photoacoustic imaging-guided photothermal therapy of non-small cell lung cancer. ACS Appl. Mater. Interfaces (2018). https://doi.org/10.1021/acsami.7b19013CrossRef Zhao, Y., Liu, W., Tian, Y., Yang, Z., Wang, X., Zhang, Y., et al.: Anti-EGFR peptide-conjugated triangular gold nanoplates for computed tomography/photoacoustic imaging-guided photothermal therapy of non-small cell lung cancer. ACS Appl. Mater. Interfaces (2018). https://​doi.​org/​10.​1021/​acsami.​7b19013CrossRef
122.
Zurück zum Zitat Zhao, L., Tang, M., Weir, M.D., Detamore, M.S., Xu, H.H.K.: Osteogenic media and rhBMP-2-induced differentiation of umbilical cord mesenchymal stem cells encapsulated in alginate microbeads and integrated in an injectable calcium phosphate-chitosan fibrous scaffold. Tissue Eng. Part A (2011). https://doi.org/10.1089/ten.tea.2010.0521CrossRef Zhao, L., Tang, M., Weir, M.D., Detamore, M.S., Xu, H.H.K.: Osteogenic media and rhBMP-2-induced differentiation of umbilical cord mesenchymal stem cells encapsulated in alginate microbeads and integrated in an injectable calcium phosphate-chitosan fibrous scaffold. Tissue Eng. Part A (2011). https://​doi.​org/​10.​1089/​ten.​tea.​2010.​0521CrossRef
123.
Zurück zum Zitat Paul, A., Hasan, A., Kindi, H.A., Gaharwar, A.K., Rao, V.T.S., Nikkhah, M., et al.: Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano (2014). https://doi.org/10.1021/nn5020787 Paul, A., Hasan, A., Kindi, H.A., Gaharwar, A.K., Rao, V.T.S., Nikkhah, M., et al.: Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano (2014). https://​doi.​org/​10.​1021/​nn5020787
129.
Zurück zum Zitat Jeong, D.W., Park, W., Bedair, T.M., Kang, E.Y., Kim, I.H., Park, D.S., et al.: Augmented re-endothelialization and anti-inflammation of coronary drug-eluting stent by abluminal coating with magnesium hydroxide. Biomater. Sci. (2019). https://doi.org/10.1039/c8bm01696hCrossRef Jeong, D.W., Park, W., Bedair, T.M., Kang, E.Y., Kim, I.H., Park, D.S., et al.: Augmented re-endothelialization and anti-inflammation of coronary drug-eluting stent by abluminal coating with magnesium hydroxide. Biomater. Sci. (2019). https://​doi.​org/​10.​1039/​c8bm01696hCrossRef
132.
Zurück zum Zitat Tan, A., Farhatnia, Y., Goh, D., Natasha, G., de Mel, A., Lim, J., et al.: Surface modification of a polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane (POSS-PCU) nanocomposite polymer as a stent coating for enhanced capture of endothelial progenitor cells. Biointerphases (2013). https://doi.org/10.1186/1559-4106-8-23CrossRef Tan, A., Farhatnia, Y., Goh, D., Natasha, G., de Mel, A., Lim, J., et al.: Surface modification of a polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane (POSS-PCU) nanocomposite polymer as a stent coating for enhanced capture of endothelial progenitor cells. Biointerphases (2013). https://​doi.​org/​10.​1186/​1559-4106-8-23CrossRef
142.
152.
Zurück zum Zitat Weng, K.C., Noble, C.O., Papahadjopoulos-Sternberg, B., Chen, F.F., Drummond, D.C., Kirpotin, D.B., et al.: Targeted tumor cell internalization and imaging of multifunctional quantum dot-conjugated immunoliposomes in-vitro and in-vivo. Nano. Lett. (2008). https://doi.org/10.1021/nl801488uCrossRef Weng, K.C., Noble, C.O., Papahadjopoulos-Sternberg, B., Chen, F.F., Drummond, D.C., Kirpotin, D.B., et al.: Targeted tumor cell internalization and imaging of multifunctional quantum dot-conjugated immunoliposomes in-vitro and in-vivo. Nano. Lett. (2008). https://​doi.​org/​10.​1021/​nl801488uCrossRef
161.
Zurück zum Zitat Cho, H.S., Dong, Z., Pauletti, G.M., Zhang, J., Xu, H., Gu, H., et al.: Fluorescent, superparamagnetic nanospheres for drug storage, targeting, and imaging: A multifunctional nanocarrier system for cancer diagnosis and treatment. ACS Nano (2010). https://doi.org/10.1021/nn101000eCrossRef Cho, H.S., Dong, Z., Pauletti, G.M., Zhang, J., Xu, H., Gu, H., et al.: Fluorescent, superparamagnetic nanospheres for drug storage, targeting, and imaging: A multifunctional nanocarrier system for cancer diagnosis and treatment. ACS Nano (2010). https://​doi.​org/​10.​1021/​nn101000eCrossRef
Metadaten
Titel
Hybrid Nanostructures for Biomedical Applications
verfasst von
R. Rajakumari
Abhimanyu Tharayil
Sabu Thomas
Nandakumar Kalarikkal
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-90506-4_12

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.