Zum Inhalt

Hybrid Stacking Model with Optuna Optimization for Open Stope Stability Prediction

  • 04.11.2025
  • Original Paper

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The stability of underground open stopes is vital for safe mining, and accurate prediction is essential. This study developed a stability prediction framework integrating hybrid stacking ensemble modeling with the Optuna optimization algorithm to enhance traditional stability graphs. The workflow begins with revising the dataset compiled by Mawdesley. The revised dataset was then divided into training and testing subsets, followed by standardized preprocessing applied to both subsets. To reduce overfitting, a five-fold cross-validation strategy was systematically incorporated with the Optuna algorithm for hyperparameter optimization across ten machine learning algorithms. Three global indicators (accuracy, Kappa coefficient, and area under the curve (AUC)) and three local indicators (precision, recall, and F1 score) were employed for performance evaluation. Following performance ranking, the top three algorithms were selected as base learners, while a ridge regression classifier was designated as the meta learner for complementary characteristics and efficiency. The constructed stacking model was subsequently optimized. The optimized stacking ensemble model achieved an accuracy of 0.8689, precision of 0.8542, recall of 0.7519, F1 score of 0.7857, Kappa coefficient of 0.5760, and an AUC value of 0.8944 on the test set. Subsequent application of this model facilitated the generation of an updated stability graph, demonstrating marked improvements over traditional empirical approaches in both prediction accuracy and resistance to subjective bias. Furthermore, a comparative analysis revealed Optuna’s superior efficiency and effectiveness relative to Bayesian optimization, simulated annealing, and random search methodologies. This study provides a more reliable and accurate tool for open stope stability prediction.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Titel
Hybrid Stacking Model with Optuna Optimization for Open Stope Stability Prediction
Verfasst von
Weizhang Liang
Pengpeng Lu
Meng Wang
Hani S. Mitri
Publikationsdatum
04.11.2025
Verlag
Springer Vienna
Erschienen in
Rock Mechanics and Rock Engineering
Print ISSN: 0723-2632
Elektronische ISSN: 1434-453X
DOI
https://doi.org/10.1007/s00603-025-05043-0
Dieser Inhalt ist nur sichtbar, wenn du eingeloggt bist und die entsprechende Berechtigung hast.