Skip to main content

2013 | OriginalPaper | Buchkapitel

Hydrodynamic Analysis of a Three-Fluidized Bed Reactor Cold Flow Model for Chemical Looping Hydrogen Generation: Pressure Characteristics

verfasst von : Zhipeng Xue, Wenguo Xiang, Shiyi Chen, Dong Wang

Erschienen in: Cleaner Combustion and Sustainable World

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Chemical looping hydrogen generation (CLHG) can produce pure hydrogen with inherent separation of CO2 from fossils fuel. The process involves a metal oxide, as an oxygen carrier, such as iron oxide. The CLHG system consists of three reactors: a fuel reactor (FR), a steam reactor (SR) and an air reactor (AR). In the FR, the fuel gases react with iron oxides (hematite Fe2O3, magnetite Fe3O4, wüstite FeO), generating reduced iron oxides (FeO or even Fe), and with full conversion of gaseous fuels, pure CO2 can be obtained after cooling the flue gas from the fuel reactor; in the SR, FeO and Fe reacts with steam to generate magnetite (Fe3O4) and H2, the latter representing the final target product of the process; in the AR, the magnetite is oxidized back to hematite which is used in another cycle.
A cold flow model of three-fluidized bed for CLHG corresponding to 50 KW hot units has been built. A major novelty of this facility is the compact fuel reactor, which integrates a bubble and a fast fluidized bed to avoid the incomplete conversion of the fuel gas caused by the thermodynamics equilibrium. In order to study the pressure characteristics and the solids concentration of the system, especially in the fuel reactor, the gas velocity of three reactors, gas flow of L-type value, total solids inventory (TSI) and the secondary air of fuel reactor were varied. Results show that the pressure and the solids concentration are strongly influenced by the fluidizing-gas velocity of three reactors. Moreover, the entrainment of the upper part of fuel reactor increases as the total solids inventory increases, and the operating range of the FR can be changed by introducing secondary air or increasing the total solids inventory.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Winter CJ. Hydrogen energy – abundant, efficient, clean: a debate over the energy-system-of-change. Int J Hydrogen Energy. 2009;34(14):S1–52.CrossRef Winter CJ. Hydrogen energy – abundant, efficient, clean: a debate over the energy-system-of-change. Int J Hydrogen Energy. 2009;34(14):S1–52.CrossRef
2.
Zurück zum Zitat Gupta P, Velazquez-Vargas LG, Fan LS. Syngas redox (SGR) process to produce hydrogen from coal derived syngas. Energy Fuel. 2007;21(5):2900–8.CrossRef Gupta P, Velazquez-Vargas LG, Fan LS. Syngas redox (SGR) process to produce hydrogen from coal derived syngas. Energy Fuel. 2007;21(5):2900–8.CrossRef
3.
Zurück zum Zitat Mattisson T, Johansson M, Lyngfelt A. Multicycle reduction and oxidation of different types of iron oxide particles – application to chemical-looping combustion. Energy Fuel. 2004;18(3):628–37.CrossRef Mattisson T, Johansson M, Lyngfelt A. Multicycle reduction and oxidation of different types of iron oxide particles – application to chemical-looping combustion. Energy Fuel. 2004;18(3):628–37.CrossRef
4.
Zurück zum Zitat Chiesa P, Lozza G, Malandrino A, et al. Three-reactors chemical looping process for hydrogen production. Int J Hydrogen Energy. 2008;33(9):2233–45.CrossRef Chiesa P, Lozza G, Malandrino A, et al. Three-reactors chemical looping process for hydrogen production. Int J Hydrogen Energy. 2008;33(9):2233–45.CrossRef
5.
Zurück zum Zitat Cleeton JPE, Bohn CD, Muller CR, et al. Clean hydrogen production and electricity from coal via chemical looping: identifying a suitable operating regime. Int J Hydrogen Energy. 2009;34(1):1–12.CrossRef Cleeton JPE, Bohn CD, Muller CR, et al. Clean hydrogen production and electricity from coal via chemical looping: identifying a suitable operating regime. Int J Hydrogen Energy. 2009;34(1):1–12.CrossRef
6.
Zurück zum Zitat Fan LS, Li FX, Ramkumar S. Utilization of chemical looping strategy in coal gasification processes. Particuology. 2008;6(3):131–42.CrossRef Fan LS, Li FX, Ramkumar S. Utilization of chemical looping strategy in coal gasification processes. Particuology. 2008;6(3):131–42.CrossRef
7.
Zurück zum Zitat Gnanapragasam NV, Reddy BV, Rosen MA. Hydrogen production from coal using coal direct chemical looping and syngas chemical looping combustion systems: assessment of system operation and resource requirements. Int J Hydrogen Energy. 2009;34(6):2606–15.CrossRef Gnanapragasam NV, Reddy BV, Rosen MA. Hydrogen production from coal using coal direct chemical looping and syngas chemical looping combustion systems: assessment of system operation and resource requirements. Int J Hydrogen Energy. 2009;34(6):2606–15.CrossRef
8.
Zurück zum Zitat Xiang W, Chen S, Xue Z, et al. Investigation of coal gasification hydrogen and electricity co-production plant with three-reactors chemical looping process. Int J Hydrogen Energy. 2010;35(16):8580–91.CrossRef Xiang W, Chen S, Xue Z, et al. Investigation of coal gasification hydrogen and electricity co-production plant with three-reactors chemical looping process. Int J Hydrogen Energy. 2010;35(16):8580–91.CrossRef
9.
Zurück zum Zitat Li FX, Zeng LA, Velazquez-Vargas LG, et al. Syngas chemical looping gasification process: bench-scale studies and reactor simulations. AICHE J. 2010;56(8):2186–99.CrossRef Li FX, Zeng LA, Velazquez-Vargas LG, et al. Syngas chemical looping gasification process: bench-scale studies and reactor simulations. AICHE J. 2010;56(8):2186–99.CrossRef
10.
Zurück zum Zitat Jerndal E, Mattisson T, Lyngfelt A. Thermal analysis of chemical-looping combustion. Chem Eng Res Des. 2006;84(9):795–806.CrossRef Jerndal E, Mattisson T, Lyngfelt A. Thermal analysis of chemical-looping combustion. Chem Eng Res Des. 2006;84(9):795–806.CrossRef
11.
Zurück zum Zitat Lyngfelt A, Mattisson T. Capture of CO2 using chemical-looping combustion. 2001. Lyngfelt A, Mattisson T. Capture of CO2 using chemical-looping combustion. 2001.
12.
Zurück zum Zitat Yang JB, Cai NS, Li ZS. Hydrogen production from the steam-iron process with direct reduction of iron oxide by chemical looping combustion of coal char. Energy Fuel. 2008;22(4):2570–9.CrossRef Yang JB, Cai NS, Li ZS. Hydrogen production from the steam-iron process with direct reduction of iron oxide by chemical looping combustion of coal char. Energy Fuel. 2008;22(4):2570–9.CrossRef
13.
Zurück zum Zitat Johansson E, Lyngfelt A, Mattisson T, et al. Gas leakage measurements in a cold model of an interconnected fluidized bed for chemical-looping combustion. Powder Technol. 2003;134(3):210–7.CrossRef Johansson E, Lyngfelt A, Mattisson T, et al. Gas leakage measurements in a cold model of an interconnected fluidized bed for chemical-looping combustion. Powder Technol. 2003;134(3):210–7.CrossRef
14.
Zurück zum Zitat Kronberger B, Lyngfelt A, Loffler G, et al. Design and fluid dynamic analysis of a bench-scale combustion system with CO2 separation-chemical-looping combustion. Ind Eng Chem Res. 2005;44(3):546–56.CrossRef Kronberger B, Lyngfelt A, Loffler G, et al. Design and fluid dynamic analysis of a bench-scale combustion system with CO2 separation-chemical-looping combustion. Ind Eng Chem Res. 2005;44(3):546–56.CrossRef
15.
Zurück zum Zitat Berguerand N, Lyngfelt A. Design and operation of a 10 kW(th) chemical-looping combustor for solid fuels – testing with South African coal. Fuel. 2008;87(12):2713–26.CrossRef Berguerand N, Lyngfelt A. Design and operation of a 10 kW(th) chemical-looping combustor for solid fuels – testing with South African coal. Fuel. 2008;87(12):2713–26.CrossRef
16.
Zurück zum Zitat Mattisson T, Leion H, Lyngfelt A. Chemical-looping with oxygen uncoupling using CuO/ZrO2 with petroleum coke. Fuel. 2009;88(4):683–90.CrossRef Mattisson T, Leion H, Lyngfelt A. Chemical-looping with oxygen uncoupling using CuO/ZrO2 with petroleum coke. Fuel. 2009;88(4):683–90.CrossRef
17.
Zurück zum Zitat Ryu HJ, Jin GT. Conceptual design of 50 kW thermal chemical-looping combustor and analysis of variables. Energy Eng J. 2003;12(4):289–301. Ryu HJ, Jin GT. Conceptual design of 50 kW thermal chemical-looping combustor and analysis of variables. Energy Eng J. 2003;12(4):289–301.
18.
Zurück zum Zitat Adanez J, Gayan P, Celaya J, et al. Chemical looping combustion in a 10 kW(th) prototype using a CuO/Al2O3 oxygen carrier: effect of operating conditions on methane combustion. Ind Eng Chem Res. 2006;45(17):6075–80.CrossRef Adanez J, Gayan P, Celaya J, et al. Chemical looping combustion in a 10 kW(th) prototype using a CuO/Al2O3 oxygen carrier: effect of operating conditions on methane combustion. Ind Eng Chem Res. 2006;45(17):6075–80.CrossRef
19.
Zurück zum Zitat de Diego LF, Ortiz M, Garcia-Labiano F, et al. Synthesis gas generation by chemical-looping reforming using a Ni-based oxygen carrier. Energy Procedia. 2009;1(1):3–10.CrossRef de Diego LF, Ortiz M, Garcia-Labiano F, et al. Synthesis gas generation by chemical-looping reforming using a Ni-based oxygen carrier. Energy Procedia. 2009;1(1):3–10.CrossRef
20.
Zurück zum Zitat Johansson E, Mattisson T, Lyngfelt A, et al. A 300 W laboratory reactor system for chemical-looping combustion with particle circulation. Fuel. 2006;85(10–11):1428–38.CrossRef Johansson E, Mattisson T, Lyngfelt A, et al. A 300 W laboratory reactor system for chemical-looping combustion with particle circulation. Fuel. 2006;85(10–11):1428–38.CrossRef
21.
Zurück zum Zitat Kronberger B, Johansson E, Loffler G, et al. A two-compartment fluidized bed reactor for CO2 capture by chemical-looping combustion. Chem Eng Technol. 2004;27(12):1318–26.CrossRef Kronberger B, Johansson E, Loffler G, et al. A two-compartment fluidized bed reactor for CO2 capture by chemical-looping combustion. Chem Eng Technol. 2004;27(12):1318–26.CrossRef
22.
Zurück zum Zitat Kim SD, Son SR. Semi-continuous operation of chemical-looping combustion with metal oxides supported on bentonite in an annular fluidized bed reactor. In: The 10th Asian conference on fluidized bed and three-phase reactors; 2006. p. 192–7. Kim SD, Son SR. Semi-continuous operation of chemical-looping combustion with metal oxides supported on bentonite in an annular fluidized bed reactor. In: The 10th Asian conference on fluidized bed and three-phase reactors; 2006. p. 192–7.
23.
Zurück zum Zitat Ryu HJ, Park YC, Jo SH, et al. Development of novel two-interconnected fluidized bed system. Korean J Chem Eng. 2008;25(5):1178–83.CrossRef Ryu HJ, Park YC, Jo SH, et al. Development of novel two-interconnected fluidized bed system. Korean J Chem Eng. 2008;25(5):1178–83.CrossRef
24.
Zurück zum Zitat Ryu HJ, Lee SY, Park YC, et al. Solid circulation rate and gas leakage measurements in an interconnected bubbling fluidized beds. World Acad Sci Eng Technol. 2007;22:169–74. Ryu HJ, Lee SY, Park YC, et al. Solid circulation rate and gas leakage measurements in an interconnected bubbling fluidized beds. World Acad Sci Eng Technol. 2007;22:169–74.
25.
Zurück zum Zitat Kolbitsch P, Bolhar-Nordenkampf J, Proll T, et al. Operating experience with chemical looping combustion in a 120 kW dual circulating fluidized bed (DCFB) unit. Int J Greenhouse Gas Control. 2010;4(2):180–5.CrossRef Kolbitsch P, Bolhar-Nordenkampf J, Proll T, et al. Operating experience with chemical looping combustion in a 120 kW dual circulating fluidized bed (DCFB) unit. Int J Greenhouse Gas Control. 2010;4(2):180–5.CrossRef
26.
Zurück zum Zitat Kolbitsch P, Proll T, Bolhar-Nordenkampf J, et al. Design of a chemical looping combustor using a dual circulating fluidized bed reactor system. Chem Eng Technol. 2009;32(3):398–403.CrossRef Kolbitsch P, Proll T, Bolhar-Nordenkampf J, et al. Design of a chemical looping combustor using a dual circulating fluidized bed reactor system. Chem Eng Technol. 2009;32(3):398–403.CrossRef
27.
Zurück zum Zitat Proll T, Rupanovits K, Kolbitsch P, et al. Cold flow model study on a dual circulating fluidized bed system for chemical looping processes. Chem Eng Technol. 2009;32(3):418–24.CrossRef Proll T, Rupanovits K, Kolbitsch P, et al. Cold flow model study on a dual circulating fluidized bed system for chemical looping processes. Chem Eng Technol. 2009;32(3):418–24.CrossRef
28.
Zurück zum Zitat Shen LH, Wu JH, Xiao J. Experiments on chemical looping combustion of coal with a NiO based oxygen carrier. Combust Flame. 2009;156(3):721–8.CrossRef Shen LH, Wu JH, Xiao J. Experiments on chemical looping combustion of coal with a NiO based oxygen carrier. Combust Flame. 2009;156(3):721–8.CrossRef
29.
Zurück zum Zitat Xiang W, Chen S, Xue Z, et al. Investigation of coal gasification hydrogen and electricity co-production plant with three-reactors chemical looping process. Int J Hydrogen Energy (in press). Xiang W, Chen S, Xue Z, et al. Investigation of coal gasification hydrogen and electricity co-production plant with three-reactors chemical looping process. Int J Hydrogen Energy (in press).
30.
Zurück zum Zitat Glicksman LR, Hyre MR, Farrell PA. Dynamic similarity in fluidization. Int J Multiphase Flow. 1994;20:331–86.MATHCrossRef Glicksman LR, Hyre MR, Farrell PA. Dynamic similarity in fluidization. Int J Multiphase Flow. 1994;20:331–86.MATHCrossRef
31.
Zurück zum Zitat Glicksman LR, Hyre M, Woloshun K. Simplified scaling relationships for fluidized-beds. Powder Technol. 1993;77(2):177–99.CrossRef Glicksman LR, Hyre M, Woloshun K. Simplified scaling relationships for fluidized-beds. Powder Technol. 1993;77(2):177–99.CrossRef
Metadaten
Titel
Hydrodynamic Analysis of a Three-Fluidized Bed Reactor Cold Flow Model for Chemical Looping Hydrogen Generation: Pressure Characteristics
verfasst von
Zhipeng Xue
Wenguo Xiang
Shiyi Chen
Dong Wang
Copyright-Jahr
2013
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-30445-3_179