Skip to main content
Erschienen in: Optical and Quantum Electronics 2/2020

01.02.2020

Hydrodynamic and molecular-dynamics modeling of laser ablation in liquid: from surface melting till bubble formation

verfasst von: N. A. Inogamov, V. A. Khokhlov, Yu. V. Petrov, V. V. Zhakhovsky

Erschienen in: Optical and Quantum Electronics | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Laser ablation through liquid is an important process that have to be studied for applications which use laser ablation in liquid (LAL) and laser shock peening (LSP). LAL is employed for production of suspensions of nanoparticles (NP), while LSP is applied to increase hardness and fatique/corrosion resistance properties of a surface layer. A bubble appears in liquid around the laser spot focused at a target surface after strong enough laser pulse. In the paper we connect the early quasi-plane heated layer created by a pulse in liquid and the bubble forming at much later stages. In the previous works these early stage from one side and the late stage from another side existed mainly as independent entities. At least, quantitative links between them were unknown. We consider how the quasi-plane heated layer of liquid forms thank to thermal conduction, how gradually conduction becomes weaker, and how the heated layer of liquid nearly adiabatically expands to few orders of magnitude in volume during the drop of pressure. Our molecular dynamics simulations show that the heated layer is filled by the diffusive atomic metal–liquid mixture. Metal atoms began to condense into NPs when they meet cold liquid outside the edge of mixing zone. This process limits diffusive expansion of metal atoms, because the diffusivity of NP is less than that of individual atoms. Thus the mixture expands together with hot liquid, and the NPs approximately homogeneously fill an interior of bubble.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bailly, A.L., Correard, F., Popov, A., Tselikov, G., Chaspoul, F., Appay, R., Al-Kattan, A., Kabashin, A., Braguer, D., Esteve, M.A.: In vivo evaluation of safety, biodistribution and pharmacokinetics of laser-synthesized gold nanoparticles. Sci. Rep. 9, 1–12 (2019). https://doi.org/10.1038/s41598-019-48748-3 CrossRef Bailly, A.L., Correard, F., Popov, A., Tselikov, G., Chaspoul, F., Appay, R., Al-Kattan, A., Kabashin, A., Braguer, D., Esteve, M.A.: In vivo evaluation of safety, biodistribution and pharmacokinetics of laser-synthesized gold nanoparticles. Sci. Rep. 9, 1–12 (2019). https://​doi.​org/​10.​1038/​s41598-019-48748-3 CrossRef
Zurück zum Zitat Bushman, A.V., Kanel’, G.I., Ni, A.L., Fortov, V.E.: Intense Dynamic Loading of Condensed Matter. Taylor & Francis, Abingdon (1993) Bushman, A.V., Kanel’, G.I., Ni, A.L., Fortov, V.E.: Intense Dynamic Loading of Condensed Matter. Taylor & Francis, Abingdon (1993)
Zurück zum Zitat Kanitz, A., Kalus, M.R., Gurevich, E.L., Ostendorf, A., Barcikowski, S., Amans, D.: Review on experimental and theoretical investigations of the early stage, femtoseconds to microseconds processes during laser ablation in liquid-phase for the synthesis of colloidal nanoparticles. Plasma Sources Sci. Technol. 28(10), 103001 (2019a). https://doi.org/10.1088/1361-6595/ab3dbe ADSCrossRef Kanitz, A., Kalus, M.R., Gurevich, E.L., Ostendorf, A., Barcikowski, S., Amans, D.: Review on experimental and theoretical investigations of the early stage, femtoseconds to microseconds processes during laser ablation in liquid-phase for the synthesis of colloidal nanoparticles. Plasma Sources Sci. Technol. 28(10), 103001 (2019a). https://​doi.​org/​10.​1088/​1361-6595/​ab3dbe ADSCrossRef
Zurück zum Zitat Karthik, D., Swaroop, S.: Laser peening without coating-an advanced surface treatment: a review. Mater. Manuf. Process. 32(14), 1565–1572 (2017)CrossRef Karthik, D., Swaroop, S.: Laser peening without coating-an advanced surface treatment: a review. Mater. Manuf. Process. 32(14), 1565–1572 (2017)CrossRef
Zurück zum Zitat Krylach, I.V., Kudryashov, S.I., Olekhnovich, R.O., Moskvin, M.K., Uspenskaya, M.V.: Tuning water wetting angle of a steel surface via nanosecond laser ablative nano/microtexturing for chemical and biomedical microfluidic applications. Laser Phys. Lett. 16(10), 105602 (2019). https://doi.org/10.1088/1612-202x/ab3d32 ADSCrossRef Krylach, I.V., Kudryashov, S.I., Olekhnovich, R.O., Moskvin, M.K., Uspenskaya, M.V.: Tuning water wetting angle of a steel surface via nanosecond laser ablative nano/microtexturing for chemical and biomedical microfluidic applications. Laser Phys. Lett. 16(10), 105602 (2019). https://​doi.​org/​10.​1088/​1612-202x/​ab3d32 ADSCrossRef
Zurück zum Zitat Kudryashov, S.I., Samokhvalov, A.A., Nastulyavichus, A.A., Saraeva, I.N., Mikhailovskii, V.Y., Ionin, A.A., Veiko, V.P.: Nanosecond-laser generation of nanoparticles in liquids: from ablation through bubble dynamics to nanoparticle yield. Materials 12(4), 562 (2019a). https://doi.org/10.3390/ma12040562 ADSCrossRef Kudryashov, S.I., Samokhvalov, A.A., Nastulyavichus, A.A., Saraeva, I.N., Mikhailovskii, V.Y., Ionin, A.A., Veiko, V.P.: Nanosecond-laser generation of nanoparticles in liquids: from ablation through bubble dynamics to nanoparticle yield. Materials 12(4), 562 (2019a). https://​doi.​org/​10.​3390/​ma12040562 ADSCrossRef
Zurück zum Zitat Kudryashov, S.I., Levchenko, A.O., Danilov, P.A., Smirnov, N.A., Rudenko, A.A., Melnik, N.N., Busleev, N.I., Ionin, A.A.: Direct femtosecond-laser writing of optical-range nanoscale metagratings/metacouplers on diamond surfaces. Appl. Phys. Lett. 115(7), 073102 (2019d). https://doi.org/10.1063/1.5114630 ADSCrossRef Kudryashov, S.I., Levchenko, A.O., Danilov, P.A., Smirnov, N.A., Rudenko, A.A., Melnik, N.N., Busleev, N.I., Ionin, A.A.: Direct femtosecond-laser writing of optical-range nanoscale metagratings/metacouplers on diamond surfaces. Appl. Phys. Lett. 115(7), 073102 (2019d). https://​doi.​org/​10.​1063/​1.​5114630 ADSCrossRef
Zurück zum Zitat Kudryashov, S.I., Nastulyavichus, A.A., Ivanova, A.K., Smirnov, N.A., Khmelnitskiy, R.A., Rudenko, A.A., Saraeva, I.N., Tolordava, E.R., Kharin, A.Y., Zavestovskaya, I.N., Romanova, Y.M., Zayarny, D.A., Ionin, A.A.: High-throughput laser generation of Si-nanoparticle based surface coatings for antibacterial applications. Appl. Surf. Sci. 470, 825–831 (2019e). https://doi.org/10.1016/j.apsusc.2018.11.201 ADSCrossRef Kudryashov, S.I., Nastulyavichus, A.A., Ivanova, A.K., Smirnov, N.A., Khmelnitskiy, R.A., Rudenko, A.A., Saraeva, I.N., Tolordava, E.R., Kharin, A.Y., Zavestovskaya, I.N., Romanova, Y.M., Zayarny, D.A., Ionin, A.A.: High-throughput laser generation of Si-nanoparticle based surface coatings for antibacterial applications. Appl. Surf. Sci. 470, 825–831 (2019e). https://​doi.​org/​10.​1016/​j.​apsusc.​2018.​11.​201 ADSCrossRef
Zurück zum Zitat Lemmon, E.W., McLinden, M.O., Friend, D.G.: NIST chemistry webbook, NIST Standard Reference Database Number 69 (National Institute of Standards and Technology, Gaithersburg MD, 20899, 2019), chap. Thermophysical Properties of Fluid Systems. https://doi.org/10.18434/T4D303 Lemmon, E.W., McLinden, M.O., Friend, D.G.: NIST chemistry webbook, NIST Standard Reference Database Number 69 (National Institute of Standards and Technology, Gaithersburg MD, 20899, 2019), chap. Thermophysical Properties of Fluid Systems. https://​doi.​org/​10.​18434/​T4D303
Zurück zum Zitat Nastulyavichus, A.A., Kudryashov, S.I., Smirnov, N.A., Rudenko, A.A., Kharin, A.Y., Zayarny, D.A., Ionin, A.A.: Nanosecond-laser plasma-mediated generation of colloidal solutions from silver films of variable thickness: colloidal optical density versus pre-determined ablated mass. Opt. Laser Technol. 111, 75–80 (2019). https://doi.org/10.1016/j.optlastec.2018.09.038 ADSCrossRef Nastulyavichus, A.A., Kudryashov, S.I., Smirnov, N.A., Rudenko, A.A., Kharin, A.Y., Zayarny, D.A., Ionin, A.A.: Nanosecond-laser plasma-mediated generation of colloidal solutions from silver films of variable thickness: colloidal optical density versus pre-determined ablated mass. Opt. Laser Technol. 111, 75–80 (2019). https://​doi.​org/​10.​1016/​j.​optlastec.​2018.​09.​038 ADSCrossRef
Zurück zum Zitat Pavlov, D.V., Zhizhchenko, A.Y., Honda, M., Yamanaka, M., Vitrik, O.B., Kulinich, S.A., Juodkazis, S., Kudryashov, S.I., Kuchmizhak, A.A.: Multi-purpose nanovoid array plasmonic sensor produced by direct laser patterning. Nanomaterials 9(10), 1348 (2019). https://doi.org/10.3390/nano9101348 CrossRef Pavlov, D.V., Zhizhchenko, A.Y., Honda, M., Yamanaka, M., Vitrik, O.B., Kulinich, S.A., Juodkazis, S., Kudryashov, S.I., Kuchmizhak, A.A.: Multi-purpose nanovoid array plasmonic sensor produced by direct laser patterning. Nanomaterials 9(10), 1348 (2019). https://​doi.​org/​10.​3390/​nano9101348 CrossRef
Zurück zum Zitat Phipps, C.R., Turner, T.P., Harrison, R.F., York, G.W., Osborne, W.Z., Anderson, G.K., Corlis, X.F., Haynes, L.C., Steele, H.S., Spicochi, K.C., King, T.R.: Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers. J. Appl. Phys. 64(3), 1083–1096 (1988). https://doi.org/10.1063/1.341867 ADSCrossRef Phipps, C.R., Turner, T.P., Harrison, R.F., York, G.W., Osborne, W.Z., Anderson, G.K., Corlis, X.F., Haynes, L.C., Steele, H.S., Spicochi, K.C., King, T.R.: Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers. J. Appl. Phys. 64(3), 1083–1096 (1988). https://​doi.​org/​10.​1063/​1.​341867 ADSCrossRef
Zurück zum Zitat Samarskii, A.A.: The Theory of Difference Schemes, vol. 786. CRC Press, Boca Raton (2001)CrossRef Samarskii, A.A.: The Theory of Difference Schemes, vol. 786. CRC Press, Boca Raton (2001)CrossRef
Zurück zum Zitat Sano, T., Eimura, T., Kashiwabara, R., Matsuda, T., Isshiki, Y., Hirose, A., Tsutsumi, S., Arakawa, K., Hashimoto, T., Masaki, K., Sano, Y.: Femtosecond laser peening of 2024 aluminum alloy without a sacrificial overlay under atmospheric conditions. J. Laser Appl. 29(1), 012005 (2017). https://doi.org/10.2351/1.4967013 CrossRef Sano, T., Eimura, T., Kashiwabara, R., Matsuda, T., Isshiki, Y., Hirose, A., Tsutsumi, S., Arakawa, K., Hashimoto, T., Masaki, K., Sano, Y.: Femtosecond laser peening of 2024 aluminum alloy without a sacrificial overlay under atmospheric conditions. J. Laser Appl. 29(1), 012005 (2017). https://​doi.​org/​10.​2351/​1.​4967013 CrossRef
Zurück zum Zitat Saraeva, I.N., Luong, N.V., Kudryashov, S.I., Rudenko, A.A., Khmelnitskiy, R.A., Shakhmin, A.L., Kharin, A.Y., Ionin, A.A., Zayarny, D.A., Tung, D.H., Duong, P.V., Minh, P.H.: Laser synthesis of colloidal Si@Au and Si@Ag nanoparticles in water via plasma-assisted reduction. J. Photochem. Photobiol. A Chem. 360, 125–131 (2018). https://doi.org/10.1016/j.jphotochem.2018.04.004 CrossRef Saraeva, I.N., Luong, N.V., Kudryashov, S.I., Rudenko, A.A., Khmelnitskiy, R.A., Shakhmin, A.L., Kharin, A.Y., Ionin, A.A., Zayarny, D.A., Tung, D.H., Duong, P.V., Minh, P.H.: Laser synthesis of colloidal Si@Au and Si@Ag nanoparticles in water via plasma-assisted reduction. J. Photochem. Photobiol. A Chem. 360, 125–131 (2018). https://​doi.​org/​10.​1016/​j.​jphotochem.​2018.​04.​004 CrossRef
Zurück zum Zitat Shepelev, V.V., Inogamov, N.A., Danilov, P.A., Kudryashov, S.I., Kuchmizhak, A.A., Vitrik, O.B.: Ultrashort pulse action onto thin film on substrate: qualitative model of shock propagation in substrate explaining phenomenon of fast growth of a hole with increase of absorbed energy. J. Phys. Conf. Ser. 1147(1), 012065 (2019). https://doi.org/10.1088/1742-6596/1147/1/012065 CrossRef Shepelev, V.V., Inogamov, N.A., Danilov, P.A., Kudryashov, S.I., Kuchmizhak, A.A., Vitrik, O.B.: Ultrashort pulse action onto thin film on substrate: qualitative model of shock propagation in substrate explaining phenomenon of fast growth of a hole with increase of absorbed energy. J. Phys. Conf. Ser. 1147(1), 012065 (2019). https://​doi.​org/​10.​1088/​1742-6596/​1147/​1/​012065 CrossRef
Zurück zum Zitat Shih, C.Y., Shugaev, M.V., Wu, C., Zhigilei, L.V.: Generation of subsurface voids, incubation effect, and formation of nanoparticles in short pulse laser interactions with bulk metal targets in liquid: molecular dynamics study. J. Phys. Chem. C 121(30), 16549–16567 (2017). https://doi.org/10.1021/acs.jpcc.7b02301 CrossRef Shih, C.Y., Shugaev, M.V., Wu, C., Zhigilei, L.V.: Generation of subsurface voids, incubation effect, and formation of nanoparticles in short pulse laser interactions with bulk metal targets in liquid: molecular dynamics study. J. Phys. Chem. C 121(30), 16549–16567 (2017). https://​doi.​org/​10.​1021/​acs.​jpcc.​7b02301 CrossRef
Zurück zum Zitat Shih, C.Y., Streubel, R., Heberle, J., Letzel, A., Shugaev, M.V., Wu, C., Schmidt, M., Gokce, B., Barcikowski, S., Zhigilei, L.V.: Two mechanisms of nanoparticle generation in picosecond laser ablation in liquids: the origin of the bimodal size distribution. Nanoscale 10, 6900–6910 (2018). https://doi.org/10.1039/C7NR08614H CrossRef Shih, C.Y., Streubel, R., Heberle, J., Letzel, A., Shugaev, M.V., Wu, C., Schmidt, M., Gokce, B., Barcikowski, S., Zhigilei, L.V.: Two mechanisms of nanoparticle generation in picosecond laser ablation in liquids: the origin of the bimodal size distribution. Nanoscale 10, 6900–6910 (2018). https://​doi.​org/​10.​1039/​C7NR08614H CrossRef
Metadaten
Titel
Hydrodynamic and molecular-dynamics modeling of laser ablation in liquid: from surface melting till bubble formation
verfasst von
N. A. Inogamov
V. A. Khokhlov
Yu. V. Petrov
V. V. Zhakhovsky
Publikationsdatum
01.02.2020
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 2/2020
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-019-2168-2

Weitere Artikel der Ausgabe 2/2020

Optical and Quantum Electronics 2/2020 Zur Ausgabe

Neuer Inhalt