Skip to main content
Erschienen in: Microsystem Technologies 1/2015

01.01.2015 | Technical Paper

Hydrodynamic focusing micropump module with PDMS/nickel-particle composite diaphragms for microfluidic systems

verfasst von: Jeonghwan Kim, Kyung-Nam Kang, Yoonyoung Jin, Jost Goettert, Pratul K. Ajmera

Erschienen in: Microsystem Technologies | Ausgabe 1/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this research, a rapid prototype hydrodynamic focusing module with three multi-fluidic speed-modulating (MFSM) micropumps in micro-fluidic flow has been designed, fabricated, and characterized. The module comprises of three MFSM micropumps having the dimension of 33 × 25 × 5 mm to achieve hydrodynamic focusing and the stream modulation. Each micropump consists of top, middle and bottom including actuation/modulation source, PDMS/nickel-particle composite (PNPC) diaphragm and Tesla-type valve/chamber, respectively. Three MFSM micropumps share one pneumatic actuation source and two individual permanent magnet modulation sources which are located above the right and left diaphragms. Each permanent magnet is manually controlled by a screw. The PNPC diaphragm deflection is obtained by the external pneumatic force, and the permanent magnet limits the displacement resulting from the interaction between the magnetic field and the nickel particles of the PNPC diaphragm. Hydrodynamic focusing is realized by the flow rate control of two side micropumps with magnetic diaphragm displacement modulation. Analyses of the magnetic modulation field, the flow rate of the MFSM micropump, and the hydrodynamic focused stream modulation are presented. The individual micropump can pump DI water with a flow rate of about 107 μl/min, and the hydrodynamic focusing channel can achieve a flow rate of about 321 μl/min, under the frequency of 2 Hz. This research examines the modulation feasibility of hydrodynamic focused center stream by controlling the neighboring stream flow rate and this technique can be utilized for possible applications in lab-on-a-chip, micro total analysis system and point of care testing system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Choong CL, Milne WI, Teo KBK (2008) Review: carbon nanotube for microfluidic lab-on-a-chip application. Int J Mat Form 1:117–125CrossRef Choong CL, Milne WI, Teo KBK (2008) Review: carbon nanotube for microfluidic lab-on-a-chip application. Int J Mat Form 1:117–125CrossRef
Zurück zum Zitat Frische N, Datta P, Goettert J (2010) Development of a biological detection platform utilizing a modular microfluidic stack. Microsyst Technol 16:1553–1561CrossRef Frische N, Datta P, Goettert J (2010) Development of a biological detection platform utilizing a modular microfluidic stack. Microsyst Technol 16:1553–1561CrossRef
Zurück zum Zitat Gamboa AR, Forster FK (2004) Is there a best fixed-geometry valve for micropumps? In: Proceedings of IMECE 2004, ASME, Fluids engineering. Anaheim, California, pp 319–324 Gamboa AR, Forster FK (2004) Is there a best fixed-geometry valve for micropumps? In: Proceedings of IMECE 2004, ASME, Fluids engineering. Anaheim, California, pp 319–324
Zurück zum Zitat Gamboa AR, Morris CJ, Forster FK (2005) Improvements in fixed-valve micropump performance through shape optimization of valves. J Fluids Eng 127:339–346CrossRef Gamboa AR, Morris CJ, Forster FK (2005) Improvements in fixed-valve micropump performance through shape optimization of valves. J Fluids Eng 127:339–346CrossRef
Zurück zum Zitat Gervais L, de Rooij N, Delamarche E (2011) Microfluidic chips for point-of-care immunodiagnostics. Adv Mater 23:H151–H176CrossRef Gervais L, de Rooij N, Delamarche E (2011) Microfluidic chips for point-of-care immunodiagnostics. Adv Mater 23:H151–H176CrossRef
Zurück zum Zitat Gravesen P, Branebjerg J, Jensen OS (1993) Microfluidics-a review. J Micromech Microeng 3:168–182CrossRef Gravesen P, Branebjerg J, Jensen OS (1993) Microfluidics-a review. J Micromech Microeng 3:168–182CrossRef
Zurück zum Zitat Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14:R35–R64CrossRef Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14:R35–R64CrossRef
Zurück zum Zitat Morris CJ, Foster FK (2003) Low-order modeling of resonance for fixed-valve micropumps based on first principles. J Microelectromech Syst 12:325–334CrossRef Morris CJ, Foster FK (2003) Low-order modeling of resonance for fixed-valve micropumps based on first principles. J Microelectromech Syst 12:325–334CrossRef
Zurück zum Zitat Pirmoradi F, Cheng L, Chiao M (2010) A magnetic poly(dimethylesiloxane) composite membrane incorporated with uniformly dispersed, coated iron oxide nanoparticles. J Micromech Microeng 20:1–7CrossRef Pirmoradi F, Cheng L, Chiao M (2010) A magnetic poly(dimethylesiloxane) composite membrane incorporated with uniformly dispersed, coated iron oxide nanoparticles. J Micromech Microeng 20:1–7CrossRef
Zurück zum Zitat Price CP, St. John A, Hicks JM (2004) Point-of-care testing, 2nd edn. American Association for Clinical Chemistry Press, London Price CP, St. John A, Hicks JM (2004) Point-of-care testing, 2nd edn. American Association for Clinical Chemistry Press, London
Zurück zum Zitat Puntambekar A, Ahn CH (2002) Self-aligning microfluidic interconnects for glass- and plastic-based microfluidic systems. J Micromech Microeng 12:35–40CrossRef Puntambekar A, Ahn CH (2002) Self-aligning microfluidic interconnects for glass- and plastic-based microfluidic systems. J Micromech Microeng 12:35–40CrossRef
Zurück zum Zitat Sorger PK (2008) Microfluidics closes in on point-of-care assays. Nat Biotechnol 26:1345–1346CrossRef Sorger PK (2008) Microfluidics closes in on point-of-care assays. Nat Biotechnol 26:1345–1346CrossRef
Zurück zum Zitat Suzuki H, Yoneyama R (2003) Integrated microfluidic system with electrochemically actuated on-chip pumps and valves. Sens Actuators B 96:38–45CrossRef Suzuki H, Yoneyama R (2003) Integrated microfluidic system with electrochemically actuated on-chip pumps and valves. Sens Actuators B 96:38–45CrossRef
Zurück zum Zitat Tesla N (1920) Valvular Conduit. US Patent 1,329,559 Tesla N (1920) Valvular Conduit. US Patent 1,329,559
Zurück zum Zitat Truong T-Q, Nguyen N-T (2003) Simulation and optimization of tesla valves. Nanotech 1:178–181 Truong T-Q, Nguyen N-T (2003) Simulation and optimization of tesla valves. Nanotech 1:178–181
Zurück zum Zitat Zheng S, Yung R, Tai Y-C, Kasdon H (2005) Deterministic lateral displacement MEMS device for continuous blood cell separation. In: MEMS, pp 851–854 Zheng S, Yung R, Tai Y-C, Kasdon H (2005) Deterministic lateral displacement MEMS device for continuous blood cell separation. In: MEMS, pp 851–854
Metadaten
Titel
Hydrodynamic focusing micropump module with PDMS/nickel-particle composite diaphragms for microfluidic systems
verfasst von
Jeonghwan Kim
Kyung-Nam Kang
Yoonyoung Jin
Jost Goettert
Pratul K. Ajmera
Publikationsdatum
01.01.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 1/2015
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-014-2089-8

Weitere Artikel der Ausgabe 1/2015

Microsystem Technologies 1/2015 Zur Ausgabe

Neuer Inhalt