Skip to main content
Erschienen in: Journal of Scientific Computing 1/2014

01.04.2014

Hydrodynamics in Porous Media: A Finite Volume Lattice Boltzmann Study

verfasst von: Ahad Zarghami, Chiara Biscarini, Sauro Succi, Stefano Ubertini

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fluid flow through porous media is of great importance for many natural systems, such as transport of groundwater flow, pollution transport and mineral processing. In this paper, we propose and validate a novel finite volume formulation of the lattice Boltzmann method for porous flows, based on the Brinkman–Forchheimer equation. The porous media effect is incorporated as a force term in the lattice Boltzmann equation, which is numerically solved through a cell-centered finite volume scheme. Correction factors are introduced to improve the numerical stability. The method is tested against fully porous Poiseuille, Couette and lid-driven cavity flows. Upon comparing the results with well-documented data available in literature, a satisfactory agreement is observed. The method is then applied to simulate the flow in partially porous channels, in order to verify its potential application to fractured porous conduits, and assess the influence of the main porous media parameters, such as Darcy number, porosity and porous media thickness.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Satuffer, F.: Groundwater I. ETH University Press, Zurich (2011) Satuffer, F.: Groundwater I. ETH University Press, Zurich (2011)
2.
Zurück zum Zitat Arora, K.R.: Soil Mechanics and Foundation Engineering. Standard Publishers Distributors, Delhi (2009) Arora, K.R.: Soil Mechanics and Foundation Engineering. Standard Publishers Distributors, Delhi (2009)
3.
Zurück zum Zitat Narvaez, A., Yazdchi, K., Luding, S., Harting, J.: From creeping to inertial flow in porous media: a lattice Boltzmann finite-element study. J. Stat. Mech-Theory E. P02038 (2013) Narvaez, A., Yazdchi, K., Luding, S., Harting, J.: From creeping to inertial flow in porous media: a lattice Boltzmann finite-element study. J. Stat. Mech-Theory E. P02038 (2013)
4.
Zurück zum Zitat Brinkman, H.C.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particle. Appl. Sci. Res. A1, 27–34 (1974) Brinkman, H.C.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particle. Appl. Sci. Res. A1, 27–34 (1974)
5.
Zurück zum Zitat Joodi, A.S., Sizaret, S., Binet, S., Bruand, A., Alberic, P., Lepiller, M.: Development of a Darcy-Brinkman model to simulate water flow and tracer transport in a heterogeneous karstic aquifer. Hydrogeol. J. 18, 295–309 (2010)CrossRef Joodi, A.S., Sizaret, S., Binet, S., Bruand, A., Alberic, P., Lepiller, M.: Development of a Darcy-Brinkman model to simulate water flow and tracer transport in a heterogeneous karstic aquifer. Hydrogeol. J. 18, 295–309 (2010)CrossRef
6.
Zurück zum Zitat Liu, H., Patil, P.R., Narusawa, U.: On Darcy-Brinkman equation: viscous flow between two parallel plates packed with regular square arrays of cylinders. Entropy 9, 118–131 (2007)CrossRefMATHMathSciNet Liu, H., Patil, P.R., Narusawa, U.: On Darcy-Brinkman equation: viscous flow between two parallel plates packed with regular square arrays of cylinders. Entropy 9, 118–131 (2007)CrossRefMATHMathSciNet
7.
Zurück zum Zitat Rao, P.R.M., Venkataraman, P.: Validation of Forchheimer’s law for flow through porous media with converging boundaries. J. Hydraul. Eng. 126, 63–71 (2000)CrossRef Rao, P.R.M., Venkataraman, P.: Validation of Forchheimer’s law for flow through porous media with converging boundaries. J. Hydraul. Eng. 126, 63–71 (2000)CrossRef
8.
Zurück zum Zitat Montillet, A.: Flow through a finite packed bed of spheres: a note on the limit of applicability of the Forchheimer-type equation. J. Fluids Eng. 126, 139–143 (2004)CrossRef Montillet, A.: Flow through a finite packed bed of spheres: a note on the limit of applicability of the Forchheimer-type equation. J. Fluids Eng. 126, 139–143 (2004)CrossRef
9.
10.
Zurück zum Zitat Whitaker, S.: The Forchheimer equation: a theoretical development. Transp. Porous Med. 25, 27–61 (1996)CrossRef Whitaker, S.: The Forchheimer equation: a theoretical development. Transp. Porous Med. 25, 27–61 (1996)CrossRef
11.
Zurück zum Zitat Vafai, K., Tien, C.L.: Boundary and inertia effects on flow and heat transfer in porous media. Int. J. Heat Mass Transf. 24, 195–203 (1981)CrossRefMATH Vafai, K., Tien, C.L.: Boundary and inertia effects on flow and heat transfer in porous media. Int. J. Heat Mass Transf. 24, 195–203 (1981)CrossRefMATH
12.
Zurück zum Zitat Guo, Z., Zhao, T.S.: Lattice Boltzmann model for incompressible flows through porous media. Phys. Rev. E 66, 036304 (2002)CrossRef Guo, Z., Zhao, T.S.: Lattice Boltzmann model for incompressible flows through porous media. Phys. Rev. E 66, 036304 (2002)CrossRef
13.
Zurück zum Zitat Hamdan, M.O., Al-Nimr, M.A., Alkam, M.K.: Enhancing forced convection by inserting porous substrate in the core of a parallel-plate channel. Int. J. Numer. Method H. 10, 502–517 (2000) Hamdan, M.O., Al-Nimr, M.A., Alkam, M.K.: Enhancing forced convection by inserting porous substrate in the core of a parallel-plate channel. Int. J. Numer. Method H. 10, 502–517 (2000)
14.
Zurück zum Zitat Alkam, M.K., Al-Nimr, M.A.: Transient non-Darcian forced convection flow in a pipe partially filled with a porous material. Int. J. Heat Mass Transf. 41, 347–356 (1998)CrossRefMATH Alkam, M.K., Al-Nimr, M.A.: Transient non-Darcian forced convection flow in a pipe partially filled with a porous material. Int. J. Heat Mass Transf. 41, 347–356 (1998)CrossRefMATH
15.
Zurück zum Zitat Sukop, M.C., Thorne, D.T.: Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers. Springer, Berlin (2006) Sukop, M.C., Thorne, D.T.: Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers. Springer, Berlin (2006)
16.
Zurück zum Zitat Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press, Oxford (2001)MATH Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press, Oxford (2001)MATH
17.
Zurück zum Zitat Benzi, R., Succi, S., Vergassola, M.: The lattice Boltzmann equation: theory and applications. Phys. Rep. 222, 145–197 (1992)CrossRef Benzi, R., Succi, S., Vergassola, M.: The lattice Boltzmann equation: theory and applications. Phys. Rep. 222, 145–197 (1992)CrossRef
18.
Zurück zum Zitat Martys, N., Chen, H.: Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. Phys. Rev. E 53, 743–750 (1996)CrossRef Martys, N., Chen, H.: Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. Phys. Rev. E 53, 743–750 (1996)CrossRef
19.
Zurück zum Zitat Shan, X., Chen, H.: Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47, 1815–1819 (1993)CrossRef Shan, X., Chen, H.: Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47, 1815–1819 (1993)CrossRef
20.
Zurück zum Zitat Artoli, A., Hoekstra, A., Sloot, P.: Mesoscopic simulations of systolic flow in the Human abdominal aorta. J. Biomech. 39, 873–884 (2006)CrossRef Artoli, A., Hoekstra, A., Sloot, P.: Mesoscopic simulations of systolic flow in the Human abdominal aorta. J. Biomech. 39, 873–884 (2006)CrossRef
21.
Zurück zum Zitat Shan, X., Yuan, X.F., Chen, H.: Kinetic theory representation of hydrodynamics: a way beyond the Navier-Stokes equation. J. Fluid Mech. 550, 413–441 (2006)CrossRefMATHMathSciNet Shan, X., Yuan, X.F., Chen, H.: Kinetic theory representation of hydrodynamics: a way beyond the Navier-Stokes equation. J. Fluid Mech. 550, 413–441 (2006)CrossRefMATHMathSciNet
22.
Zurück zum Zitat Biscarini, C., Di Francesco, S., Mencattini, M.: Application of the lattice Boltzmann method for large-scale hydraulic problems. Int. J. Numer. Method H. 21, 584–601 (2011) Biscarini, C., Di Francesco, S., Mencattini, M.: Application of the lattice Boltzmann method for large-scale hydraulic problems. Int. J. Numer. Method H. 21, 584–601 (2011)
23.
Zurück zum Zitat Falcucci, G., Ubertini, S., Biscarini, C., Di Francesco, S., Chiappini, D., Palpacelli, S., De Maio, A., Succi, S.: Lattice Boltzmann methods for multiphase flow simulations across scales. Commun. Comput. Phys. 9, 269–296 (2011) Falcucci, G., Ubertini, S., Biscarini, C., Di Francesco, S., Chiappini, D., Palpacelli, S., De Maio, A., Succi, S.: Lattice Boltzmann methods for multiphase flow simulations across scales. Commun. Comput. Phys. 9, 269–296 (2011)
24.
Zurück zum Zitat Falcucci, G., Ubertini, S., Succi, S.: Lattice Boltzmann simulations of phase-separating flows at large density ratios: the case of doubly-attractive pseudo-potentials. Soft Matter 6, 4357–4365 (2010)CrossRef Falcucci, G., Ubertini, S., Succi, S.: Lattice Boltzmann simulations of phase-separating flows at large density ratios: the case of doubly-attractive pseudo-potentials. Soft Matter 6, 4357–4365 (2010)CrossRef
25.
Zurück zum Zitat Succi, S., Foti, E., Higuera, F.: Three-dimensional flows in complex geometries with the lattice Boltzmann method. Europhys. Lett. 10, 433–438 (1989)CrossRef Succi, S., Foti, E., Higuera, F.: Three-dimensional flows in complex geometries with the lattice Boltzmann method. Europhys. Lett. 10, 433–438 (1989)CrossRef
26.
Zurück zum Zitat Cancelliere, A., Chang, C., Foti, E., Rothman, D.H., Succi, S.: The permeability of a random medium: comparison of simulation with theory. Phys. Fluids A 2, 2085–2089 (1990)CrossRef Cancelliere, A., Chang, C., Foti, E., Rothman, D.H., Succi, S.: The permeability of a random medium: comparison of simulation with theory. Phys. Fluids A 2, 2085–2089 (1990)CrossRef
27.
Zurück zum Zitat Sukop, M.C., Huang, H., Lin, C.L., Deo, M.D., Oh, K., Miller, J.D.: Distribution of multiphase fluids in porous media: comparison between lattice Boltzmann modeling and micro-x-ray tomography. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 77, 026710 (2008)CrossRef Sukop, M.C., Huang, H., Lin, C.L., Deo, M.D., Oh, K., Miller, J.D.: Distribution of multiphase fluids in porous media: comparison between lattice Boltzmann modeling and micro-x-ray tomography. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 77, 026710 (2008)CrossRef
28.
Zurück zum Zitat Parmigiani, A., Huber, C., Bachmann, O., Chopard, B.: Pore-scale mass and reactant transport in multiphase porous media flows. J. Fluid Mech. 686, 40–76 (2011)CrossRefMATH Parmigiani, A., Huber, C., Bachmann, O., Chopard, B.: Pore-scale mass and reactant transport in multiphase porous media flows. J. Fluid Mech. 686, 40–76 (2011)CrossRefMATH
29.
Zurück zum Zitat Prasianakis, N.I., Rosén, T., Kang, J., Eller, J., Mantzaras, J., Büchi, F.N.: Simulation of 3D porous media flows with application to polymer electrolyte fuel cells. Commun. Comput. Phys. 13, 851–866 (2013) Prasianakis, N.I., Rosén, T., Kang, J., Eller, J., Mantzaras, J., Büchi, F.N.: Simulation of 3D porous media flows with application to polymer electrolyte fuel cells. Commun. Comput. Phys. 13, 851–866 (2013)
30.
Zurück zum Zitat Kang, Q., Zhang, D., Chen, S.: Unified lattice Boltzmann method for flow in multi-scale porous media. Phys. Rev. E 66, 056307 (2002)CrossRef Kang, Q., Zhang, D., Chen, S.: Unified lattice Boltzmann method for flow in multi-scale porous media. Phys. Rev. E 66, 056307 (2002)CrossRef
31.
Zurück zum Zitat Anwar, S., Sukop, M.C.: Regional scale transient groundwater flow modeling using lattice Boltzmann methods. Comput. Math. Appl. 58, 1015–1023 (2009)CrossRefMATHMathSciNet Anwar, S., Sukop, M.C.: Regional scale transient groundwater flow modeling using lattice Boltzmann methods. Comput. Math. Appl. 58, 1015–1023 (2009)CrossRefMATHMathSciNet
32.
Zurück zum Zitat Chau, J.F., Or, D., Sukop, M.C.: Simulation of gaseous diffusion in partially saturated porous media under variable gravity with lattice Boltzmann methods. Water Resour. Res. 41, W08410 (2005) Chau, J.F., Or, D., Sukop, M.C.: Simulation of gaseous diffusion in partially saturated porous media under variable gravity with lattice Boltzmann methods. Water Resour. Res. 41, W08410 (2005)
33.
Zurück zum Zitat Seta, T., Takegoshi, E., Okui, K.: Lattice Boltzmann simulation of natural convection in porous media. Math. Comput. Simul. 72, 195–200 (2006)CrossRefMATHMathSciNet Seta, T., Takegoshi, E., Okui, K.: Lattice Boltzmann simulation of natural convection in porous media. Math. Comput. Simul. 72, 195–200 (2006)CrossRefMATHMathSciNet
34.
Zurück zum Zitat Geller, S., Krafczyk, M., Tölke, J., Turek, S., Hron, J.: Benchmark computations based on lattice-Boltzmann, finite element and finite volume methods for laminar flows. Comput. Fluids 35, 888–897 (2006)CrossRefMATH Geller, S., Krafczyk, M., Tölke, J., Turek, S., Hron, J.: Benchmark computations based on lattice-Boltzmann, finite element and finite volume methods for laminar flows. Comput. Fluids 35, 888–897 (2006)CrossRefMATH
35.
Zurück zum Zitat Bhatnagar, P.L., Gross, E.P., Krook, M.: A Model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)CrossRefMATH Bhatnagar, P.L., Gross, E.P., Krook, M.: A Model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)CrossRefMATH
36.
Zurück zum Zitat Higuera, F.J., Succi, S., Benzi, R.: Lattice gas dynamics with enhanced collisions. Europhys. Lett. 9, 345–349 (1989)CrossRef Higuera, F.J., Succi, S., Benzi, R.: Lattice gas dynamics with enhanced collisions. Europhys. Lett. 9, 345–349 (1989)CrossRef
37.
Zurück zum Zitat Chen, H., Chen, S., Matthaeus, W.H.: Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method. Phys. Rev. A 45, 5339–5342 (1992)CrossRef Chen, H., Chen, S., Matthaeus, W.H.: Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method. Phys. Rev. A 45, 5339–5342 (1992)CrossRef
38.
Zurück zum Zitat Qian, Y.H., D’Humieres, D., Lallemand, P.: Lattice BGK models for Navier-Stokes equation. Europhys. Lett. 17, 479–484 (1992)CrossRefMATH Qian, Y.H., D’Humieres, D., Lallemand, P.: Lattice BGK models for Navier-Stokes equation. Europhys. Lett. 17, 479–484 (1992)CrossRefMATH
39.
Zurück zum Zitat Succi, S., Karlin, I.V., Chen, H.: Role of the H-theorem in lattice Boltzmann hydrodynamic simulations. Rev. Mod. Phys. 74, 1203–1220 (2002)CrossRef Succi, S., Karlin, I.V., Chen, H.: Role of the H-theorem in lattice Boltzmann hydrodynamic simulations. Rev. Mod. Phys. 74, 1203–1220 (2002)CrossRef
40.
Zurück zum Zitat D’Humières, D.: Generalized lattice Boltzmann equations. Prog. Aeronaut. Astronaut. 159, 450–458 (1992) D’Humières, D.: Generalized lattice Boltzmann equations. Prog. Aeronaut. Astronaut. 159, 450–458 (1992)
41.
Zurück zum Zitat Lallemand, P., Luo, L.S.: Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance and stability. Phys. Rev. E 61, 6546–6562 (2000)CrossRefMathSciNet Lallemand, P., Luo, L.S.: Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance and stability. Phys. Rev. E 61, 6546–6562 (2000)CrossRefMathSciNet
42.
Zurück zum Zitat Kaehler, G., Wagner, A.J.: Derivation of hydrodynamics for multi-relaxation time lattice Boltzmann using the moment approach. Commun. Comput. Phys. 13, 614–628 (2013)MathSciNet Kaehler, G., Wagner, A.J.: Derivation of hydrodynamics for multi-relaxation time lattice Boltzmann using the moment approach. Commun. Comput. Phys. 13, 614–628 (2013)MathSciNet
43.
Zurück zum Zitat D’Humières, D.: Multiple-relaxation-time lattice Boltzmann models in three dimensions. Phil. Trans. R. Soc. Lond. A 360, 437–451 (2002)CrossRefMATH D’Humières, D.: Multiple-relaxation-time lattice Boltzmann models in three dimensions. Phil. Trans. R. Soc. Lond. A 360, 437–451 (2002)CrossRefMATH
44.
Zurück zum Zitat Geier, M.C.: Ab Initio Derivation of the Cascade Lattice Boltzmann. Ph.D. Thesis, University of Freiburg, Germany (2006) Geier, M.C.: Ab Initio Derivation of the Cascade Lattice Boltzmann. Ph.D. Thesis, University of Freiburg, Germany (2006)
45.
Zurück zum Zitat Ricot, D., Marié, S., Sagaut, P., Bailly, C.: Lattice Boltzmann method with selective viscosity filter. J. Comput. Phys. 228, 4478–4490 (2009)CrossRefMATH Ricot, D., Marié, S., Sagaut, P., Bailly, C.: Lattice Boltzmann method with selective viscosity filter. J. Comput. Phys. 228, 4478–4490 (2009)CrossRefMATH
46.
Zurück zum Zitat Ansumali, S., Arcidiacono, S., Chikatamarla, S.S., Prasianakis, N.I., Gorban, A.N., Karlin, I.V.: Quasi-equilibrium lattice Boltzmann method. Eur. Phys. J. B 56, 135–139 (2007)CrossRef Ansumali, S., Arcidiacono, S., Chikatamarla, S.S., Prasianakis, N.I., Gorban, A.N., Karlin, I.V.: Quasi-equilibrium lattice Boltzmann method. Eur. Phys. J. B 56, 135–139 (2007)CrossRef
47.
Zurück zum Zitat Asinari, P., Karlin, I.V.: Quasi-equilibrium lattice Boltzmann models with tunable bulk viscosity for enhancing stability. Phys. Rev. E 81, 016702 (2010)CrossRef Asinari, P., Karlin, I.V.: Quasi-equilibrium lattice Boltzmann models with tunable bulk viscosity for enhancing stability. Phys. Rev. E 81, 016702 (2010)CrossRef
48.
Zurück zum Zitat Ansumali, S., Karlin, I.V.: Stabilization of the lattice Boltzmann method by the H-theorem: a numerical test. Phys. Rev. E 62, 7999–8003 (2002)CrossRefMathSciNet Ansumali, S., Karlin, I.V.: Stabilization of the lattice Boltzmann method by the H-theorem: a numerical test. Phys. Rev. E 62, 7999–8003 (2002)CrossRefMathSciNet
49.
Zurück zum Zitat Ansumali, S., Karlin, I.V.: Single relaxation time model for entropic lattice Boltzmann methods. Phys. Rev. E 65, 056312 (2002)CrossRefMathSciNet Ansumali, S., Karlin, I.V.: Single relaxation time model for entropic lattice Boltzmann methods. Phys. Rev. E 65, 056312 (2002)CrossRefMathSciNet
50.
Zurück zum Zitat Singh, S., Krithivasan, S., Karlin, I.V., Succi, S., Ansumali, S.: Energy conserving lattice Boltzmann models for incompressible flow simulations. Commun. Comput. Phys. 13, 603–613 (2013) Singh, S., Krithivasan, S., Karlin, I.V., Succi, S., Ansumali, S.: Energy conserving lattice Boltzmann models for incompressible flow simulations. Commun. Comput. Phys. 13, 603–613 (2013)
51.
Zurück zum Zitat Tosi, F., Ubertini, S., Succi, S., Karlin, I.V.: Optimization strategies for the entropic lattice Boltzmann method. J. Sci. Comput. 30, 369–387 (2007)CrossRefMATHMathSciNet Tosi, F., Ubertini, S., Succi, S., Karlin, I.V.: Optimization strategies for the entropic lattice Boltzmann method. J. Sci. Comput. 30, 369–387 (2007)CrossRefMATHMathSciNet
52.
Zurück zum Zitat Lee, T., Lin, C.-L.: A characteristic Galerkin method for discrete Boltzmann equation. J. Comput. Phys. 171, 336–356 (2001)CrossRefMATH Lee, T., Lin, C.-L.: A characteristic Galerkin method for discrete Boltzmann equation. J. Comput. Phys. 171, 336–356 (2001)CrossRefMATH
53.
Zurück zum Zitat Imamura, T., Suzuki, K., Nakamura, T., Yoshida, M.: Acceleration of teady-state lattice Boltzmann simulations on non-uniform mesh using local time step method. J. Comput. Phys. 202, 645–663 (2005)CrossRefMATH Imamura, T., Suzuki, K., Nakamura, T., Yoshida, M.: Acceleration of teady-state lattice Boltzmann simulations on non-uniform mesh using local time step method. J. Comput. Phys. 202, 645–663 (2005)CrossRefMATH
54.
Zurück zum Zitat Cao, N., Chen, S., Jin, S., Martinez, D.: Physical symmetry and lattice symmetry in the lattice Boltzmann method. Phys. Rev. E 55, R21–R24 (1997)CrossRef Cao, N., Chen, S., Jin, S., Martinez, D.: Physical symmetry and lattice symmetry in the lattice Boltzmann method. Phys. Rev. E 55, R21–R24 (1997)CrossRef
55.
Zurück zum Zitat Mei, R., Shyy, W.: On the finite difference-based lattice Boltzmann method in curvilinear coordinates. J. Comput. Phys. 143, 426–448 (1998)CrossRefMATHMathSciNet Mei, R., Shyy, W.: On the finite difference-based lattice Boltzmann method in curvilinear coordinates. J. Comput. Phys. 143, 426–448 (1998)CrossRefMATHMathSciNet
56.
Zurück zum Zitat Jiang, B.N.: In the Least-Squares Finite Element Method: Theory and Applications in Computational Fluid Dynamics and Electromagnetics. Springer, New York (1998). Jiang, B.N.: In the Least-Squares Finite Element Method: Theory and Applications in Computational Fluid Dynamics and Electromagnetics. Springer, New York (1998).
57.
Zurück zum Zitat Li, Y., LeBoeuf, E.J., Basu, P.K.: Least-squares finite-element scheme for the lattice Boltzmann method on an unstructured mesh. Phys. Rev. E 72, 046711 (2005)CrossRef Li, Y., LeBoeuf, E.J., Basu, P.K.: Least-squares finite-element scheme for the lattice Boltzmann method on an unstructured mesh. Phys. Rev. E 72, 046711 (2005)CrossRef
58.
59.
Zurück zum Zitat Ubertini, S., Succi, S., Bella, G.: Lattice Boltzmann schemes without coordinates. Phil. Trans. R. Soc. A 362, 1763–1771 (2004)CrossRefMATHMathSciNet Ubertini, S., Succi, S., Bella, G.: Lattice Boltzmann schemes without coordinates. Phil. Trans. R. Soc. A 362, 1763–1771 (2004)CrossRefMATHMathSciNet
60.
Zurück zum Zitat Ubertini, S., Rossi, N., Succi, S., Bella, G.: Unstructured lattice Boltzmann method in three dimensions. Int. J. Numer. Methods Fluids 49, 619–633 (2005)CrossRefMATH Ubertini, S., Rossi, N., Succi, S., Bella, G.: Unstructured lattice Boltzmann method in three dimensions. Int. J. Numer. Methods Fluids 49, 619–633 (2005)CrossRefMATH
61.
Zurück zum Zitat Ubertini, S., Bella, G., Succi, S.: Unstructured lattice Boltzmann equation with memory. Math. Comput. Simulat. 72, 237–241 (2006)CrossRefMATHMathSciNet Ubertini, S., Bella, G., Succi, S.: Unstructured lattice Boltzmann equation with memory. Math. Comput. Simulat. 72, 237–241 (2006)CrossRefMATHMathSciNet
62.
Zurück zum Zitat Peng, G., Xi, H., Duncan, C., Chou, S.H.: Finite volume scheme for the lattice Boltzmann method on unstructured meshes. Phys. Rev. E 59, 4675–4682 (1999)CrossRef Peng, G., Xi, H., Duncan, C., Chou, S.H.: Finite volume scheme for the lattice Boltzmann method on unstructured meshes. Phys. Rev. E 59, 4675–4682 (1999)CrossRef
63.
Zurück zum Zitat Stiebler, M., Tolkeand, J., Krafczyk, M.: An upwind discretization scheme for the finite volume lattice Boltzmann method. Comput. Fluids 35, 814–819 (2006)CrossRefMATHMathSciNet Stiebler, M., Tolkeand, J., Krafczyk, M.: An upwind discretization scheme for the finite volume lattice Boltzmann method. Comput. Fluids 35, 814–819 (2006)CrossRefMATHMathSciNet
64.
Zurück zum Zitat Bernaschi, M., Succi, S., Chen, H.: Accelerated lattice Boltzmann schemes for steady-state flow simulations. J. Sci. Comput. 16, 135–144 (2001)CrossRefMATHMathSciNet Bernaschi, M., Succi, S., Chen, H.: Accelerated lattice Boltzmann schemes for steady-state flow simulations. J. Sci. Comput. 16, 135–144 (2001)CrossRefMATHMathSciNet
65.
Zurück zum Zitat Ricot, D., Marié, S., Sagaut, P., Bailly, C.: Lattice Boltzmann method with selective viscosity filter. J. Comput. Phys. 228, 4478–4490 (2009)CrossRefMATH Ricot, D., Marié, S., Sagaut, P., Bailly, C.: Lattice Boltzmann method with selective viscosity filter. J. Comput. Phys. 228, 4478–4490 (2009)CrossRefMATH
67.
Zurück zum Zitat Patil, D.V., Lakshmisha, K.N.: Finite volume TVD formulation of lattice Boltzmann simulation on unstructured mesh. J. Comput. Phys. 228, 5262–5279 (2009)CrossRefMATHMathSciNet Patil, D.V., Lakshmisha, K.N.: Finite volume TVD formulation of lattice Boltzmann simulation on unstructured mesh. J. Comput. Phys. 228, 5262–5279 (2009)CrossRefMATHMathSciNet
68.
Zurück zum Zitat Patil, D.V., Lakshmisha, K.N.: Two-dimensional flow past circular cylinders using finite volume lattice Boltzmann formulation. Int. J. Numer. Methods Fluids 69, 1149–1164 (2012)CrossRefMATHMathSciNet Patil, D.V., Lakshmisha, K.N.: Two-dimensional flow past circular cylinders using finite volume lattice Boltzmann formulation. Int. J. Numer. Methods Fluids 69, 1149–1164 (2012)CrossRefMATHMathSciNet
69.
Zurück zum Zitat Zarghami, A., Ubertini, S., Succi, S.: Finite-volume lattice Boltzmann modeling of thermal transport in nanofluids. Comput. Fluids 77, 56–65 (2013)CrossRefMathSciNet Zarghami, A., Ubertini, S., Succi, S.: Finite-volume lattice Boltzmann modeling of thermal transport in nanofluids. Comput. Fluids 77, 56–65 (2013)CrossRefMathSciNet
70.
Zurück zum Zitat Ubertini, S., Bella, G., Succi, S.: Lattice Boltzmann method on unstructured grids: further developments. Phys. Rev. E 68, 016701 (2003)CrossRefMathSciNet Ubertini, S., Bella, G., Succi, S.: Lattice Boltzmann method on unstructured grids: further developments. Phys. Rev. E 68, 016701 (2003)CrossRefMathSciNet
71.
Zurück zum Zitat Ubertini, S., Asinari, P., Succi, S.: Three ways to lattice Boltzmann: a unified time-marching picture. Phys. Rev. E 81, 016311 (2009)CrossRef Ubertini, S., Asinari, P., Succi, S.: Three ways to lattice Boltzmann: a unified time-marching picture. Phys. Rev. E 81, 016311 (2009)CrossRef
72.
Zurück zum Zitat Zarghami, A., Maghrebi, M.J., Ubertini, S., Succi, S.: Modeling of bifurcation phenomena in suddenly expanded flows with a new finite volume lattice Boltzmann method. Int. J. Mod. Phys. C 22, 977–1003 (2011)CrossRefMATH Zarghami, A., Maghrebi, M.J., Ubertini, S., Succi, S.: Modeling of bifurcation phenomena in suddenly expanded flows with a new finite volume lattice Boltzmann method. Int. J. Mod. Phys. C 22, 977–1003 (2011)CrossRefMATH
73.
Zurück zum Zitat Guo, Z., Zheng, C., Shi, B.: Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 65, 046308 (2002)CrossRef Guo, Z., Zheng, C., Shi, B.: Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 65, 046308 (2002)CrossRef
74.
Zurück zum Zitat Zou, Q., He, X.: On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys. Fluids 9, 1591–1598 (1997)CrossRefMATHMathSciNet Zou, Q., He, X.: On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys. Fluids 9, 1591–1598 (1997)CrossRefMATHMathSciNet
75.
Zurück zum Zitat Zarghami, A., Maghrebi, M.J., Ghasemi, J., Ubertini, S.: Lattice Boltzmann finite volume formulation with improved stability. Commun. Comput. Phys. 12, 42–64 (2012) Zarghami, A., Maghrebi, M.J., Ghasemi, J., Ubertini, S.: Lattice Boltzmann finite volume formulation with improved stability. Commun. Comput. Phys. 12, 42–64 (2012)
76.
Zurück zum Zitat Ghia, U., Ghia, K.N., Shin, C.T.: High-Re solutions for incompressible flow using Navier-Stokes equations and a multigrid method. J. Comp. Phys. 48, 387–411 (1982)CrossRefMATH Ghia, U., Ghia, K.N., Shin, C.T.: High-Re solutions for incompressible flow using Navier-Stokes equations and a multigrid method. J. Comp. Phys. 48, 387–411 (1982)CrossRefMATH
77.
Zurück zum Zitat Cook, P.G.: A Guide to Regional Groundwater Flow in Fractured Rock Aquifers. Seaview Press, South Australia (2003) Cook, P.G.: A Guide to Regional Groundwater Flow in Fractured Rock Aquifers. Seaview Press, South Australia (2003)
78.
Zurück zum Zitat Hoffmann, K.A., Chiang, S.T.: Computational Fluid Dynamics for Engineers. Engineering Education System, Kansas (1993) Hoffmann, K.A., Chiang, S.T.: Computational Fluid Dynamics for Engineers. Engineering Education System, Kansas (1993)
79.
Zurück zum Zitat Bear, J.: Dynamics of Fluids in Porous Media. Dover Publications, New York (1988) Bear, J.: Dynamics of Fluids in Porous Media. Dover Publications, New York (1988)
80.
Zurück zum Zitat Gibb, J.P., Barcelona, M.J., Ritchey, J.D., Lefaivre, M.H.: Effective Porosity of Geological Materials. ISWS Report No. 351, Illinois (1984) Gibb, J.P., Barcelona, M.J., Ritchey, J.D., Lefaivre, M.H.: Effective Porosity of Geological Materials. ISWS Report No. 351, Illinois (1984)
Metadaten
Titel
Hydrodynamics in Porous Media: A Finite Volume Lattice Boltzmann Study
verfasst von
Ahad Zarghami
Chiara Biscarini
Sauro Succi
Stefano Ubertini
Publikationsdatum
01.04.2014
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2014
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-013-9754-4

Weitere Artikel der Ausgabe 1/2014

Journal of Scientific Computing 1/2014 Zur Ausgabe