Skip to main content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2023 | OriginalPaper | Buchkapitel

2. Hydrodynamics of Swimming

Abstract

This chapter presents the physical principles that allow fishes to propel themselves and analyzes why they move with high energy efficiency while having outstanding swimming performances. Firstly, the different strategies of swimming locomotion of fishes and cetaceans are described emphasizing the differences in the characteristics of the surrounding flow. Then, two analytical models of fish swimming are introduced and compared: the Slender Body Theory and the Waving Plate Model. These models lie on several simplifying assumptions, which do not reflect the actual fish geometry and behavior; still, they are very useful to understand the general basic principles of fish propulsion from a mathematical point of view. The same simplified approach is then used to analyze the vortices in the wake and relate them to the produced thrust. Finally, it is described how the energy efficiency is measured for a self-propelling body, and it is related to the Strouhal number.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wu TY (1971) Hydromechanics of swimming of fishes and cetaceans. Adv Appl Mech 11:1–63 CrossRef Wu TY (1971) Hydromechanics of swimming of fishes and cetaceans. Adv Appl Mech 11:1–63 CrossRef
2.
Zurück zum Zitat Gazzola M, Argentina M, Mahadevan L (2014) Scaling macroscopic aquatic locomotion. Nat Phys 10:758–761 CrossRef Gazzola M, Argentina M, Mahadevan L (2014) Scaling macroscopic aquatic locomotion. Nat Phys 10:758–761 CrossRef
3.
Zurück zum Zitat Sfakiotakis M, Lane DM, Davies J (1999) Review of fish swimming modes for aquatic locomotion. IEEE J Ocean Eng 24(2):237–252 CrossRef Sfakiotakis M, Lane DM, Davies J (1999) Review of fish swimming modes for aquatic locomotion. IEEE J Ocean Eng 24(2):237–252 CrossRef
6.
Zurück zum Zitat Wu TY (1971) Hydromechanics of swimming propulsion. Part 1. Swimming of a two-dimensional flexible plate at variable forward speeds in an inviscid fluid. J Fluid Mech 46:337–355 (1971) Wu TY (1971) Hydromechanics of swimming propulsion. Part 1. Swimming of a two-dimensional flexible plate at variable forward speeds in an inviscid fluid. J Fluid Mech 46:337–355 (1971)
7.
Zurück zum Zitat Ramesh K, Granlund K, Ol MV, Gopalarathnam A, Edwards JR (2018) Leading-edge flow criticality as a governing factor in leading-edge vortex initiation in unsteady airfoil flows. Theor Comput Fluid Dyn 32:109–136 MathSciNetCrossRef Ramesh K, Granlund K, Ol MV, Gopalarathnam A, Edwards JR (2018) Leading-edge flow criticality as a governing factor in leading-edge vortex initiation in unsteady airfoil flows. Theor Comput Fluid Dyn 32:109–136 MathSciNetCrossRef
9.
Zurück zum Zitat Gordon MS, Blickhan R, Dabiri JO, Videler JJ (2017) Animal locomotion: physical principles and adaptations. CRC Press—Taylor & Francis Group Gordon MS, Blickhan R, Dabiri JO, Videler JJ (2017) Animal locomotion: physical principles and adaptations. CRC Press—Taylor & Francis Group
10.
Zurück zum Zitat Wu TY (1971) Hydromechanics of swimming propulsion. Part 3. Swimming and optimum movements of slender fish with side fins. J Fluid Mech 46:545–568 Wu TY (1971) Hydromechanics of swimming propulsion. Part 3. Swimming and optimum movements of slender fish with side fins. J Fluid Mech 46:545–568
11.
Zurück zum Zitat Eloy C (2012) Optimal strouhal number for swimming animals. J Fluids Struct 30:205–218 CrossRef Eloy C (2012) Optimal strouhal number for swimming animals. J Fluids Struct 30:205–218 CrossRef
12.
Zurück zum Zitat Drucker EG, Lauder GV (1999) Locomotor forces on a swimming fish: three-dimensional vortex wake dynamics quantified using digital particle image velocimetry. J Exp Biol 202:2393–2412 CrossRef Drucker EG, Lauder GV (1999) Locomotor forces on a swimming fish: three-dimensional vortex wake dynamics quantified using digital particle image velocimetry. J Exp Biol 202:2393–2412 CrossRef
13.
Zurück zum Zitat Wu JC (1981) Theory for aerodynamic force and moment in viscous flows. AIAA J 19(4):432–441 CrossRefMATH Wu JC (1981) Theory for aerodynamic force and moment in viscous flows. AIAA J 19(4):432–441 CrossRefMATH
14.
Zurück zum Zitat Saffman PG, Schatzmann JC (1982) An inviscid model for the vortex-street wake. J Fluid Mech 122:467–486 CrossRefMATH Saffman PG, Schatzmann JC (1982) An inviscid model for the vortex-street wake. J Fluid Mech 122:467–486 CrossRefMATH
15.
Zurück zum Zitat Triantafyllou MS, Triantafyllou GS, Gopalkrishnan R (1991) Wake mechanics for thrust generation in oscillating foils. Phys Fluids A 3:2835–2837 CrossRef Triantafyllou MS, Triantafyllou GS, Gopalkrishnan R (1991) Wake mechanics for thrust generation in oscillating foils. Phys Fluids A 3:2835–2837 CrossRef
16.
Zurück zum Zitat Saadat M, Fish FE, Domel AG, Di Santo V, Lauder GV, Haj-Hariri H (2017) On the rules for aquatic locomotion. Phys Rev Fluids 2:083102 CrossRef Saadat M, Fish FE, Domel AG, Di Santo V, Lauder GV, Haj-Hariri H (2017) On the rules for aquatic locomotion. Phys Rev Fluids 2:083102 CrossRef
17.
Zurück zum Zitat Taylor GK, Nudds RL, Thomas ALR (2003) Flying and swimming animals cruise at a strouhal number tuned for high power efficiency. Lett Nat 425:707–710 CrossRef Taylor GK, Nudds RL, Thomas ALR (2003) Flying and swimming animals cruise at a strouhal number tuned for high power efficiency. Lett Nat 425:707–710 CrossRef
18.
Zurück zum Zitat Triantafyllou GS, Triantafyllou MS, Grosenbaugh MA (1993) Optimal thrust development in oscillating foils with application to fish propulsion. J Fluids Struct 7:205–224 CrossRef Triantafyllou GS, Triantafyllou MS, Grosenbaugh MA (1993) Optimal thrust development in oscillating foils with application to fish propulsion. J Fluids Struct 7:205–224 CrossRef
19.
Zurück zum Zitat Anderson JM, Streitlien K, Barrett DS, Triantafyllou MS (1998) Oscillating foils of high propulsive efficiency. J Fluid Mech 360:41–72 MathSciNetCrossRefMATH Anderson JM, Streitlien K, Barrett DS, Triantafyllou MS (1998) Oscillating foils of high propulsive efficiency. J Fluid Mech 360:41–72 MathSciNetCrossRefMATH
20.
Zurück zum Zitat Borazjani I, Daghooghi M (2012) The fish tail motion forms an attached leading edge vortex. Proc R Soc B 280:20122071 CrossRef Borazjani I, Daghooghi M (2012) The fish tail motion forms an attached leading edge vortex. Proc R Soc B 280:20122071 CrossRef
21.
22.
Zurück zum Zitat Drucker EG, Lauder GV (2001) Locomotor function of the dorsal fin in teleost fishes: experimental analysis of wake forces in sunfish. J Exp Biol 204:2943–2958 CrossRef Drucker EG, Lauder GV (2001) Locomotor function of the dorsal fin in teleost fishes: experimental analysis of wake forces in sunfish. J Exp Biol 204:2943–2958 CrossRef
23.
Zurück zum Zitat Han P, Lauder GV, Dong H (2020) Hydrodynamics of median-fin interactions in fish-like locomotion: effects of fin shape and movement. Phys Fluids 32:011902 CrossRef Han P, Lauder GV, Dong H (2020) Hydrodynamics of median-fin interactions in fish-like locomotion: effects of fin shape and movement. Phys Fluids 32:011902 CrossRef
24.
Zurück zum Zitat Beal DN, Hover FS, Triantafyllou MS, Liao JC, Lauder GV (2006) Passive propulsion in vortex wakes. J Fluid Mech 549:385–402 CrossRef Beal DN, Hover FS, Triantafyllou MS, Liao JC, Lauder GV (2006) Passive propulsion in vortex wakes. J Fluid Mech 549:385–402 CrossRef
25.
Zurück zum Zitat Liao JC (2007) A review of fish swimming mechanics and behaviour in altered flows. Phylosophical Trans R Soc B 362:1973–1993 CrossRef Liao JC (2007) A review of fish swimming mechanics and behaviour in altered flows. Phylosophical Trans R Soc B 362:1973–1993 CrossRef
26.
Zurück zum Zitat Maertens AP, Triantafyllou MS, Yue DKP (2015) Efficiency of fish propulsion. Bioinspiration Biomim 10:046013 CrossRef Maertens AP, Triantafyllou MS, Yue DKP (2015) Efficiency of fish propulsion. Bioinspiration Biomim 10:046013 CrossRef
27.
Zurück zum Zitat Bale R, Hao M, Singh Bhalla AP, Patankar NA (2014) Energy efficiency and allometry of movement of swimming and flying animals. PNAS 111(21):7517–7521 Bale R, Hao M, Singh Bhalla AP, Patankar NA (2014) Energy efficiency and allometry of movement of swimming and flying animals. PNAS 111(21):7517–7521
28.
Zurück zum Zitat Kendall JL, Lucey KS, Jones EA, Wang J, Ellerby DJ (2007) Mechanical and energetic factors underlying gait transitions in bluegill sunfish (lepomis macrochirus). J Exp Biol 210:4265–4271 CrossRef Kendall JL, Lucey KS, Jones EA, Wang J, Ellerby DJ (2007) Mechanical and energetic factors underlying gait transitions in bluegill sunfish (lepomis macrochirus). J Exp Biol 210:4265–4271 CrossRef
Metadaten
Titel
Hydrodynamics of Swimming
verfasst von
Giovanni Bianchi
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-30548-1_2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.