Skip to main content

02.04.2018

Hydroelastic analysis of water impact of flexible asymmetric wedge with an oblique speed

Erschienen in: Meccanica | Ausgabe 10/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Current paper deals with hydroelastic impact of asymmetric and symmetric wedge sections with oblique speed into calm water. It is aimed to provide a better insight regarding fluid–structure interaction of the wedge sections of a high-speed craft into water in more realistic condition, in the presence of heel angle and oblique speeds. The defined problem is numerically investigated by coupled Finite Volume Method and Finite Element Method under two-way approach consideration. Accuracy of the proposed model is assessed in different steps. The results of current method are compared against previous experimental, numerical and theoretical methods and good agreement is displayed in these comparisons. Subsequently, the method is used in order to examine the fluid and structure behavior during the elastic impact of the wedge into water. Accordingly, four different physical situations are simulated. In the first part, symmetric impact with no oblique speed is simulated. The results of this part show fluctuations in vertical force and pressure of the midpoint during the impact time. Also, the relation of deadrise with deflection and pressure is observed in this part. In the second part, heel angle is also taken into consideration. It is concluded that the pressure and deflections at the right side of the wedge reduce, but these parameters increase at the left side. Moreover, it is observed that, the pressure at the midpoint of the left side of the wedge with deadrise angle of 10°, becomes negative, when the wall of the flexible wedge reaches its largest deflection. It is also observed that, the pressure at left side of the wedge with deadrise angle of 20°, reaches zero. Such behavior does not occur for the wedges of 30° and 45° deadrise angles. In the third part of simulations, oblique water entry of a flexible wedge of 20° deadrise angle is simulated, and no heel angle is considered. Harmonic behavior is observed for the vertical force, horizontal force, pressure of the midpoint and its deflection. First peaks of all of these variables are larger than the second peak. The obtained results lead us to conclude that an increase in oblique speed yields larger deflection and pressure at the right side. Meanwhile, no significant effect is observed for the left side of the wedge. Also, larger oblique speed is found to yield larger forces and angular moment. Final part of simulations involves the oblique water entry of a flexible wedge of 5° heel angle. Comparison of the results in the final part with that of third part, show that heel angle affects the pressure and deflection at both sides of the wedge. It is also observed that pressure and deflections of the left side increase, while those of right side increase. It is also seen that, similar as in the case of no heel angle, an increase in oblique speed leads to an increase of pressure and deflection at the starboard. It also leads to an increase in frequency of the vibration at right side.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Garme K, Rosén A, Stenius I, Kuttenkeuler J (2014) Rough water performance of lightweight high-speed craft. Proc Inst Mech Eng Part M J Eng Marit Environ 228(3):293–301 Garme K, Rosén A, Stenius I, Kuttenkeuler J (2014) Rough water performance of lightweight high-speed craft. Proc Inst Mech Eng Part M J Eng Marit Environ 228(3):293–301
2.
Zurück zum Zitat Barry C (2017) Rough water performance of lightweight high-speed craft. Mar Technol 54(2):18–21 Barry C (2017) Rough water performance of lightweight high-speed craft. Mar Technol 54(2):18–21
3.
Zurück zum Zitat Mu MA, Affendy S, Barki S, Adlina SF et al (2017) Mechanical behavior of potentially kapok hybrid composites in fibreglass boat. ARPN J Eng Appl Sci 12(1):3368–3372 Mu MA, Affendy S, Barki S, Adlina SF et al (2017) Mechanical behavior of potentially kapok hybrid composites in fibreglass boat. ARPN J Eng Appl Sci 12(1):3368–3372
4.
5.
Zurück zum Zitat Faltinsen OM (2000) Hydroelastic slamming. J Mar Sci Technol 5(2):49–65CrossRef Faltinsen OM (2000) Hydroelastic slamming. J Mar Sci Technol 5(2):49–65CrossRef
7.
Zurück zum Zitat Faltinsen OM (2005) Hydrodynamics of high-speed marine vehicles. Cambridge University Press, Cambridge Faltinsen OM (2005) Hydrodynamics of high-speed marine vehicles. Cambridge University Press, Cambridge
8.
Zurück zum Zitat Olausson K, Garme K (2015) Prediction and evaluation of working conditions on high-speed craft using suspension seat modelling. Proc Inst Mech Eng Part M J Eng Marit Environ 229(3):281–290 Olausson K, Garme K (2015) Prediction and evaluation of working conditions on high-speed craft using suspension seat modelling. Proc Inst Mech Eng Part M J Eng Marit Environ 229(3):281–290
9.
Zurück zum Zitat De Alwis MP, Lo Martire R, Äng BO, Garme K (2016) Development and validation of a web-based questionnaire for surveying the health and working conditions of high-performance marine craft populations. BMJ Open 6(6):e011681CrossRef De Alwis MP, Lo Martire R, Äng BO, Garme K (2016) Development and validation of a web-based questionnaire for surveying the health and working conditions of high-performance marine craft populations. BMJ Open 6(6):e011681CrossRef
10.
Zurück zum Zitat Martire RL, De Alwis MP, Äng BO, Garme K (2017) Construction of a web-based questionnaire for longitudinal investigation of work exposure, musculoskeletal pain and performance impairments in high-performance marine craft populations. BMJ Open 7(7):e016006CrossRef Martire RL, De Alwis MP, Äng BO, Garme K (2017) Construction of a web-based questionnaire for longitudinal investigation of work exposure, musculoskeletal pain and performance impairments in high-performance marine craft populations. BMJ Open 7(7):e016006CrossRef
11.
Zurück zum Zitat De Alwis P, Garme K, Lo Martire R, Kasin JI, Ang B (2017) Crew acceleration exposure, health and performance in high-speed operations at sea. In: Proceedings of the 11th symposium on high-speed Marine Vehicles, Naples, Italy De Alwis P, Garme K, Lo Martire R, Kasin JI, Ang B (2017) Crew acceleration exposure, health and performance in high-speed operations at sea. In: Proceedings of the 11th symposium on high-speed Marine Vehicles, Naples, Italy
12.
Zurück zum Zitat Savitsky D (2016) Direct measure of rigid body acceleration for water impact of a planing hull. J Ship Prod Des 32(2):1–10 Savitsky D (2016) Direct measure of rigid body acceleration for water impact of a planing hull. J Ship Prod Des 32(2):1–10
13.
Zurück zum Zitat Bowles J, Blount DL (2012) Turning characteristics and capabilities of high-speed monohulls. In: Proceedings of the third Chesapeake Powerboat Symposium, 2012, Annapolis, MD Bowles J, Blount DL (2012) Turning characteristics and capabilities of high-speed monohulls. In: Proceedings of the third Chesapeake Powerboat Symposium, 2012, Annapolis, MD
14.
Zurück zum Zitat Xu GD, Duan WY, Wu GX (2008) Numerical simulation of oblique water entry of an asymmetrical wedge. Ocean Eng 35:1597–1603CrossRef Xu GD, Duan WY, Wu GX (2008) Numerical simulation of oblique water entry of an asymmetrical wedge. Ocean Eng 35:1597–1603CrossRef
15.
Zurück zum Zitat Gu HB, Qian L, Causon DM, Mingham CG, Lin P (2014) Numerical simulation of water impact of solid bodies with vertical and oblique entries. Ocean Eng 75:128–137CrossRef Gu HB, Qian L, Causon DM, Mingham CG, Lin P (2014) Numerical simulation of water impact of solid bodies with vertical and oblique entries. Ocean Eng 75:128–137CrossRef
16.
Zurück zum Zitat von Karman T (1929) The impact of seaplanes floats during landing. NACA TN 321 von Karman T (1929) The impact of seaplanes floats during landing. NACA TN 321
17.
Zurück zum Zitat Wagner H (1932) Phenomena associated with impacts and sliding on liquid surfaces. NACA Translation Wagner H (1932) Phenomena associated with impacts and sliding on liquid surfaces. NACA Translation
19.
Zurück zum Zitat Logvinovic GV (1969) Hydrodynamic of flows with free boundaries. Naukova Dumka, Kiev Logvinovic GV (1969) Hydrodynamic of flows with free boundaries. Naukova Dumka, Kiev
20.
21.
Zurück zum Zitat Kaplan P (1987) Analysis and prediction of flat bottom slamming impact of advanced marine vehicles in waves. Int Shipbuild Prog 34:44–53CrossRef Kaplan P (1987) Analysis and prediction of flat bottom slamming impact of advanced marine vehicles in waves. Int Shipbuild Prog 34:44–53CrossRef
22.
Zurück zum Zitat Cointe R, Armand JL (1987) Hydrodynamic impact analysis of a cylinder. J Offshore Mech Arct Eng 109:237–243CrossRef Cointe R, Armand JL (1987) Hydrodynamic impact analysis of a cylinder. J Offshore Mech Arct Eng 109:237–243CrossRef
24.
Zurück zum Zitat Korobkin AA, Melenica S (2005) Modified Logvinocich model for hydrodynamic loads on asymmetric contours entering water. In: Proceedings of the 20th international workshop on water waves and floating bodies, Longyearbyen Korobkin AA, Melenica S (2005) Modified Logvinocich model for hydrodynamic loads on asymmetric contours entering water. In: Proceedings of the 20th international workshop on water waves and floating bodies, Longyearbyen
26.
Zurück zum Zitat Tassin A, Piro DJ, Korobkin AA, Maki KJ, Cooker MJ (2013) Two-dimensional water entry and exit of a body whose shape varies in time. J Fluids Struct 40:317–336CrossRef Tassin A, Piro DJ, Korobkin AA, Maki KJ, Cooker MJ (2013) Two-dimensional water entry and exit of a body whose shape varies in time. J Fluids Struct 40:317–336CrossRef
27.
Zurück zum Zitat Qin H, Zhao L, Sing J (2011) A modified Logvinovich model for hydrodynamic loads on an asymmetric wedge entering water with a roll motion. J Mar Sci Appl 10:184–189CrossRef Qin H, Zhao L, Sing J (2011) A modified Logvinovich model for hydrodynamic loads on an asymmetric wedge entering water with a roll motion. J Mar Sci Appl 10:184–189CrossRef
28.
Zurück zum Zitat Faltinsen OM, Kjaerland A, Nottveir A (1977) Water impact loads and dynamic response of horizontal circular cylinders in offshore structures. In: Proceedings of the 9th Annual Offshore Technology Conference, Huston, US Faltinsen OM, Kjaerland A, Nottveir A (1977) Water impact loads and dynamic response of horizontal circular cylinders in offshore structures. In: Proceedings of the 9th Annual Offshore Technology Conference, Huston, US
29.
Zurück zum Zitat Xu L, Troesch AW, Vorous WS (1998) Asymmetric vessel impact and planing hydrodynamics. J Ship Res 42(3):187–198 Xu L, Troesch AW, Vorous WS (1998) Asymmetric vessel impact and planing hydrodynamics. J Ship Res 42(3):187–198
31.
Zurück zum Zitat Weining F (1936) Berucksichtigung der elastizitat beim aufschlag eines gekielten flugzeugschwimmers auf das wasser (Ebenes Problem). Luftfahrtforschung 13:155–159 Weining F (1936) Berucksichtigung der elastizitat beim aufschlag eines gekielten flugzeugschwimmers auf das wasser (Ebenes Problem). Luftfahrtforschung 13:155–159
32.
Zurück zum Zitat Povitsky AS (1935) Seaplane landing impact. Report no. 199, Central Aero-Hydrodynamical Institute, Moscow, pp 1–17 Povitsky AS (1935) Seaplane landing impact. Report no. 199, Central Aero-Hydrodynamical Institute, Moscow, pp 1–17
33.
Zurück zum Zitat Povitsky AS (1939) The landing of seaplanes. Report no. 423, Central Aero-Hydrodynamical Institute, Moscow, pp 1–83 Povitsky AS (1939) The landing of seaplanes. Report no. 423, Central Aero-Hydrodynamical Institute, Moscow, pp 1–83
34.
Zurück zum Zitat Meyerhoff WK (1965) Die berechnung hydroelastischer stosse. Schiffstechnik 12(60):18–30. (12(61), 49–64) Meyerhoff WK (1965) Die berechnung hydroelastischer stosse. Schiffstechnik 12(60):18–30. (12(61), 49–64)
35.
Zurück zum Zitat Vasin AD (1993) Hydroelastic interaction of a wedge-shaped construction entering a liquid. Fluid Dyn 28(3):387–392ADSCrossRefMATH Vasin AD (1993) Hydroelastic interaction of a wedge-shaped construction entering a liquid. Fluid Dyn 28(3):387–392ADSCrossRefMATH
36.
Zurück zum Zitat Faltinsen OM (1999) Water entry of a wedge by hydroelastic orthotropic plate theory. J Ship Res 43(3):180–193 Faltinsen OM (1999) Water entry of a wedge by hydroelastic orthotropic plate theory. J Ship Res 43(3):180–193
38.
Zurück zum Zitat Scolan YM (2004) Hydroelastic behaviour of a conical shell impacting on a quiescent-free surface of an incompressible liquid. J Sound Vib 277:163–203ADSCrossRef Scolan YM (2004) Hydroelastic behaviour of a conical shell impacting on a quiescent-free surface of an incompressible liquid. J Sound Vib 277:163–203ADSCrossRef
39.
Zurück zum Zitat Faltinsen OM (1997) The effect of hydroelasticity on ship slamming. Philos Trans Math Phys Eng Sci 355:575–591ADSCrossRefMATH Faltinsen OM (1997) The effect of hydroelasticity on ship slamming. Philos Trans Math Phys Eng Sci 355:575–591ADSCrossRefMATH
40.
Zurück zum Zitat Faltinsen OM, Kvalsvold J, Aarsnes JV (1997) Wave impact on a horizontal elastic plate. J Mar Sci Technol 2:87–100CrossRef Faltinsen OM, Kvalsvold J, Aarsnes JV (1997) Wave impact on a horizontal elastic plate. J Mar Sci Technol 2:87–100CrossRef
41.
Zurück zum Zitat Shams A, Porfiri M (2015) Treatment of hydroelastic impact of flexible wedges. J Fluids Struct 57:229–246CrossRef Shams A, Porfiri M (2015) Treatment of hydroelastic impact of flexible wedges. J Fluids Struct 57:229–246CrossRef
42.
Zurück zum Zitat Lu C, He Y, Wu G (2000) Coupled analysis of nonlinear interaction between fluid and structure during impact. J Fluids Struct 14:127–146CrossRef Lu C, He Y, Wu G (2000) Coupled analysis of nonlinear interaction between fluid and structure during impact. J Fluids Struct 14:127–146CrossRef
43.
Zurück zum Zitat Sun H (2007) A boundary element method applied to strongly nonlinear wave–body interaction problems. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway Sun H (2007) A boundary element method applied to strongly nonlinear wave–body interaction problems. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway
44.
Zurück zum Zitat Bereznitsk A (2001) Slamming: the role of hydroelasticity. Int Shipbuild Prog 48(4):333–351 Bereznitsk A (2001) Slamming: the role of hydroelasticity. Int Shipbuild Prog 48(4):333–351
45.
Zurück zum Zitat Stenius I, Rosen A, Kuttenkeuler J (2007) Explicit fe-modelling of hydroelasticity in panel-water impacts. Int Shipbuild Prog 54:111–127 Stenius I, Rosen A, Kuttenkeuler J (2007) Explicit fe-modelling of hydroelasticity in panel-water impacts. Int Shipbuild Prog 54:111–127
46.
Zurück zum Zitat Wall WA, Genkinger S, Ramm E (2007) A strong coupling partitioned approach for fluid–structure interaction with free surfaces. Comput Fluids 36:169–183CrossRefMATH Wall WA, Genkinger S, Ramm E (2007) A strong coupling partitioned approach for fluid–structure interaction with free surfaces. Comput Fluids 36:169–183CrossRefMATH
47.
Zurück zum Zitat De Rosis A, Falcucci G, Porfiri M et al (2014) Hydroelastic analysis of hull slamming coupling lattice Boltzmann and finite element methods. Comput Struct 138(1):24–35CrossRef De Rosis A, Falcucci G, Porfiri M et al (2014) Hydroelastic analysis of hull slamming coupling lattice Boltzmann and finite element methods. Comput Struct 138(1):24–35CrossRef
48.
Zurück zum Zitat Panciroli R, Abrate S, Minak G, Zucchelli A (2012) Hydroelasticity in water-entry problems: comparison between experimental and SPH results. Compos Struct 94:532–539CrossRef Panciroli R, Abrate S, Minak G, Zucchelli A (2012) Hydroelasticity in water-entry problems: comparison between experimental and SPH results. Compos Struct 94:532–539CrossRef
49.
Zurück zum Zitat Fourey G, Oger G, Le Touzé D, Alessandrini B (2010) Violent fluid–structure interaction simulations using a coupled SPH/FEM method. In: IOP conference series: materials science and engineering, p 012041 Fourey G, Oger G, Le Touzé D, Alessandrini B (2010) Violent fluid–structure interaction simulations using a coupled SPH/FEM method. In: IOP conference series: materials science and engineering, p 012041
50.
Zurück zum Zitat Yang X, Liu M, Peng S, Huang C (2016) Numerical modeling of dam-break flow impacting on flexible structures using an improved SPH–EBG method. Coast Eng 108:56–64CrossRef Yang X, Liu M, Peng S, Huang C (2016) Numerical modeling of dam-break flow impacting on flexible structures using an improved SPH–EBG method. Coast Eng 108:56–64CrossRef
51.
Zurück zum Zitat Kihara H (2006) Numerical models of water impact. In: Proceedings of the 4th international conference on high-performance Marine Vehicles. Rome, Italy Kihara H (2006) Numerical models of water impact. In: Proceedings of the 4th international conference on high-performance Marine Vehicles. Rome, Italy
52.
Zurück zum Zitat Ghadimi P, Feizi Chekab MA, Dashtimanesh A (2014) Numerical simulation of water entry of different arbitrary bow sections. J Naval Archit Mar Eng 11(2):117–129CrossRef Ghadimi P, Feizi Chekab MA, Dashtimanesh A (2014) Numerical simulation of water entry of different arbitrary bow sections. J Naval Archit Mar Eng 11(2):117–129CrossRef
53.
Zurück zum Zitat Ghadimi P, Feizi Chekab MA, Dashtimanesh A (2013) A numerical investigation of the water impact of an arbitrary bow section. ISH J Hydraul Eng 19(3):186–195CrossRef Ghadimi P, Feizi Chekab MA, Dashtimanesh A (2013) A numerical investigation of the water impact of an arbitrary bow section. ISH J Hydraul Eng 19(3):186–195CrossRef
54.
Zurück zum Zitat Luo H, Wang S, Soares CG (2011) Numerical prediction of slamming loads on a rigid wedge subjected to water entry using an explicit finite element method, Advances in Marine Structures. Taylor & Francis, London, pp 41–47 Luo H, Wang S, Soares CG (2011) Numerical prediction of slamming loads on a rigid wedge subjected to water entry using an explicit finite element method, Advances in Marine Structures. Taylor & Francis, London, pp 41–47
55.
Zurück zum Zitat Farsi M, Ghadimi P (2014) Finding the best combination of numerical schemes for 2D SPH simulation of wedge water entry for a wide range of deadrise angles. Int J Naval Archit Ocean Eng 6:638–651CrossRef Farsi M, Ghadimi P (2014) Finding the best combination of numerical schemes for 2D SPH simulation of wedge water entry for a wide range of deadrise angles. Int J Naval Archit Ocean Eng 6:638–651CrossRef
56.
Zurück zum Zitat Farsi M, Ghadimi P (2016) Effect of flat deck on catamaran water entry through smoothed particle hydrodynamics. Proc Inst Mech Eng Part M J Eng Marit Environ 230(2):267–280CrossRef Farsi M, Ghadimi P (2016) Effect of flat deck on catamaran water entry through smoothed particle hydrodynamics. Proc Inst Mech Eng Part M J Eng Marit Environ 230(2):267–280CrossRef
57.
Zurück zum Zitat Facci AL, Panciroli R, Ubertini S, Porfiri M (2015) Assessment of PIV-based analysis of water entry problems through synthetic numerical datasets. J Fluids Struct 55:484–500CrossRef Facci AL, Panciroli R, Ubertini S, Porfiri M (2015) Assessment of PIV-based analysis of water entry problems through synthetic numerical datasets. J Fluids Struct 55:484–500CrossRef
58.
Zurück zum Zitat Facci AL, Porfiri M, Ubertini S (2016) Three dimensional water entry of solid body: a computational study. J Fluids Struct 66:36–53CrossRef Facci AL, Porfiri M, Ubertini S (2016) Three dimensional water entry of solid body: a computational study. J Fluids Struct 66:36–53CrossRef
59.
Zurück zum Zitat Shadmani R, Ghadimi P (2017) Parametric investigation of the effects of deadrise angle and demi-hull separation on impact forces and spray characteristics of catamaran water entry. J Braz Soc Mech Sci Eng 39(6):1989–1999CrossRef Shadmani R, Ghadimi P (2017) Parametric investigation of the effects of deadrise angle and demi-hull separation on impact forces and spray characteristics of catamaran water entry. J Braz Soc Mech Sci Eng 39(6):1989–1999CrossRef
60.
Zurück zum Zitat Shademani R, Ghadimi P (2017) Numerical assessment of turbulence effects on forces, spray parameters, and secondary impact in wedge water entry problem using k-epsilon method. Sci Iran 24(1):223–236 Shademani R, Ghadimi P (2017) Numerical assessment of turbulence effects on forces, spray parameters, and secondary impact in wedge water entry problem using k-epsilon method. Sci Iran 24(1):223–236
61.
Zurück zum Zitat Shadmani R, Ghadimi P (2017) Asymmetric water entry of twin wedges with different deadrises, heel angles, and wedge separations using finite element based finite volume method and VOF. J Appl Fluid Mech 10(1):353–368CrossRef Shadmani R, Ghadimi P (2017) Asymmetric water entry of twin wedges with different deadrises, heel angles, and wedge separations using finite element based finite volume method and VOF. J Appl Fluid Mech 10(1):353–368CrossRef
62.
Zurück zum Zitat Feizi Chekab MA, Ghadimi P, Farsi M (2016) Investigation of three-dimensionality effects of aspect ratio on water impact of 3D objects using smoothed particle hydrodynamics method. J Braz Soc Mech Sci Eng 38(7):1987–1998CrossRef Feizi Chekab MA, Ghadimi P, Farsi M (2016) Investigation of three-dimensionality effects of aspect ratio on water impact of 3D objects using smoothed particle hydrodynamics method. J Braz Soc Mech Sci Eng 38(7):1987–1998CrossRef
63.
Zurück zum Zitat Shadmani R, Ghadimi P (2017) Estimation of water entry forces, spray parameters and secondary impact of fixed width wedges at extreme angles using finite element based finite volume and volume of fluid methods. Brodogradnja 67(1):101–124 Shadmani R, Ghadimi P (2017) Estimation of water entry forces, spray parameters and secondary impact of fixed width wedges at extreme angles using finite element based finite volume and volume of fluid methods. Brodogradnja 67(1):101–124
64.
Zurück zum Zitat Farsi M, Ghadimi P (2015) Simulation of 2D symmetry and asymmetry wedge water entry by smoothed particle hydrodynamics method. J Braz Soc Mech Sci Eng 37(3):821–835CrossRef Farsi M, Ghadimi P (2015) Simulation of 2D symmetry and asymmetry wedge water entry by smoothed particle hydrodynamics method. J Braz Soc Mech Sci Eng 37(3):821–835CrossRef
65.
Zurück zum Zitat Ghadimi P, Dashtimanesh A, Djeddi SR (2012) Study of water entry of circular cylinder by using analytical and numerical solutions. J Braz Soc Mech Sci Eng 34(3):225–232CrossRef Ghadimi P, Dashtimanesh A, Djeddi SR (2012) Study of water entry of circular cylinder by using analytical and numerical solutions. J Braz Soc Mech Sci Eng 34(3):225–232CrossRef
66.
Zurück zum Zitat Javanmardi N, Ghadimi P, Tavakoli S (2018) Probing into the effects of cavitation on hydrodynamic characteristics of surface piercing propellers through numerical modeling of oblique water entry of a thin wedge. Brodogranja 69(2):151–158CrossRef Javanmardi N, Ghadimi P, Tavakoli S (2018) Probing into the effects of cavitation on hydrodynamic characteristics of surface piercing propellers through numerical modeling of oblique water entry of a thin wedge. Brodogranja 69(2):151–158CrossRef
68.
Zurück zum Zitat Reinhard M, Korobkin AA, Cooker MJ (2012) The bounce of a blunt body from a water surface at high horizontal speed. In: International workshop on water waves and floating bodies, Copenhagen, Denmark Reinhard M, Korobkin AA, Cooker MJ (2012) The bounce of a blunt body from a water surface at high horizontal speed. In: International workshop on water waves and floating bodies, Copenhagen, Denmark
69.
Zurück zum Zitat Faltinsen OM, Chazhain M (2005) A generalized Wagner method for three-dimensional slamming. J Ship Res 49(4):279–287 Faltinsen OM, Chazhain M (2005) A generalized Wagner method for three-dimensional slamming. J Ship Res 49(4):279–287
70.
Zurück zum Zitat Korobkin AA, Scolan YM (2006) Three-dimensional theory of water impact. Part 2. Linearized Wagner problem. J Fluid Mech 549:413–427CrossRef Korobkin AA, Scolan YM (2006) Three-dimensional theory of water impact. Part 2. Linearized Wagner problem. J Fluid Mech 549:413–427CrossRef
71.
Zurück zum Zitat Ghadimi P, Saadatkhah A, Dashtimanesh A (2011) Analytical solution of wedge water entry by using schwartz–christoffel conformal mapping. Int J Model Simul Sci Comput 2(3):337–354CrossRef Ghadimi P, Saadatkhah A, Dashtimanesh A (2011) Analytical solution of wedge water entry by using schwartz–christoffel conformal mapping. Int J Model Simul Sci Comput 2(3):337–354CrossRef
72.
Zurück zum Zitat Wang J, Laungi C, Faltinsen OM (2015) Experimental and numerical investigation of a freefall wedge vertically entering the water surface. Appl Ocean Res 51:181–203CrossRef Wang J, Laungi C, Faltinsen OM (2015) Experimental and numerical investigation of a freefall wedge vertically entering the water surface. Appl Ocean Res 51:181–203CrossRef
73.
Zurück zum Zitat Wang J, Laungi C, Faltinsen OM (2015) Analysis of loads, motions and cavity dynamics during freefall wedges vertically entering the water surface. Appl Ocean Res 51:38–53CrossRef Wang J, Laungi C, Faltinsen OM (2015) Analysis of loads, motions and cavity dynamics during freefall wedges vertically entering the water surface. Appl Ocean Res 51:38–53CrossRef
74.
Zurück zum Zitat Panciroli R, Porfiri M (2013) Evaluation of the pressure field on a rigid body entering a quiescent fluid through particle image velocimetry. Exp Fluids 54:1630–1642CrossRef Panciroli R, Porfiri M (2013) Evaluation of the pressure field on a rigid body entering a quiescent fluid through particle image velocimetry. Exp Fluids 54:1630–1642CrossRef
75.
Zurück zum Zitat Jalalisendi M, Osma SJ, Porfiri M (2015) Three-dimensional water entry of a solid body: a particle image velocimetry study. J Fluids Struct 59:85–102CrossRef Jalalisendi M, Osma SJ, Porfiri M (2015) Three-dimensional water entry of a solid body: a particle image velocimetry study. J Fluids Struct 59:85–102CrossRef
76.
Zurück zum Zitat Jalalisendi M, Shams A, Panciroli R, Porfiri M (2015) Experimental reconstruction of three-dimensional hydrodynamic loading in water entry problems through particle image velocimetry. Exp Fluids 56:1–17CrossRef Jalalisendi M, Shams A, Panciroli R, Porfiri M (2015) Experimental reconstruction of three-dimensional hydrodynamic loading in water entry problems through particle image velocimetry. Exp Fluids 56:1–17CrossRef
77.
Zurück zum Zitat Panciroli R, Shams A, Porfiri M (2015) Experiments on the water entry of curved wedges: high speed imaging and particle image velocimetry. Ocean Eng 94:213–222CrossRef Panciroli R, Shams A, Porfiri M (2015) Experiments on the water entry of curved wedges: high speed imaging and particle image velocimetry. Ocean Eng 94:213–222CrossRef
78.
Zurück zum Zitat Shams A, Jalalisendi M, Porfiri M (2015) Experiments on the water entry of asymmetric wedges using particle image velocimetry. Phys Fluids 27(2), Article No. 1 Shams A, Jalalisendi M, Porfiri M (2015) Experiments on the water entry of asymmetric wedges using particle image velocimetry. Phys Fluids 27(2), Article No. 1
79.
Zurück zum Zitat Ghadimi P, Tavakoli S, Dashtimanesh A (2017) Calm water performance of hard-chine vessels in semi-planing and planing regimes. Polish Marit Res 23(4):23–45 Ghadimi P, Tavakoli S, Dashtimanesh A (2017) Calm water performance of hard-chine vessels in semi-planing and planing regimes. Polish Marit Res 23(4):23–45
80.
Zurück zum Zitat Ghadimi P, Tavakoli S, Dashtimanesh A, Zamanian R (2017) Steady performance prediction of heeled planing boat in calm water using asymmetric 2D + T model. Proc Inst Mech Eng M J Eng Marit Environ 231(1):234–257 Ghadimi P, Tavakoli S, Dashtimanesh A, Zamanian R (2017) Steady performance prediction of heeled planing boat in calm water using asymmetric 2D + T model. Proc Inst Mech Eng M J Eng Marit Environ 231(1):234–257
83.
Zurück zum Zitat Morabito MG (2015) Prediction of planing hull side forces in yaw using slender body oblique impact theory. Ocean Eng 101:45–57CrossRef Morabito MG (2015) Prediction of planing hull side forces in yaw using slender body oblique impact theory. Ocean Eng 101:45–57CrossRef
84.
Zurück zum Zitat Zarnickh EE (1978) A nonlinear mathematical model of motions of a planing boat in regular waves. David Taylor Naval Ship Research and Development Center, Bethesda Zarnickh EE (1978) A nonlinear mathematical model of motions of a planing boat in regular waves. David Taylor Naval Ship Research and Development Center, Bethesda
85.
Zurück zum Zitat Zarnick EE (1978) A nonlinear mathematical model of motions of a planing boat in irregular waves. DTNSRDC. Report 79-0867-01. Bethesda, MD, USA Zarnick EE (1978) A nonlinear mathematical model of motions of a planing boat in irregular waves. DTNSRDC. Report 79-0867-01. Bethesda, MD, USA
86.
Zurück zum Zitat Akers RH (1999) Dynamic analysis of planing hulls in vertical plane. Paper Presented at: Proceedings of the Society of Naval Architects and Marine Engineers, New England Section Akers RH (1999) Dynamic analysis of planing hulls in vertical plane. Paper Presented at: Proceedings of the Society of Naval Architects and Marine Engineers, New England Section
87.
Zurück zum Zitat van Deyzen A (2008) A nonlinear mathematical model for motions of a planing monohull In head seas. Paper Presented at: Proceedings of the 6th International Conference on High Performance Marine Vehicles, Naples, Italy van Deyzen A (2008) A nonlinear mathematical model for motions of a planing monohull In head seas. Paper Presented at: Proceedings of the 6th International Conference on High Performance Marine Vehicles, Naples, Italy
88.
Zurück zum Zitat Ghadimi P, Tavakoli S, Dashtimanesh A (2016) Coupled heave and pitch motions of planing hulls at non-zero heel angles. Appl Ocean Res 59:286–303CrossRef Ghadimi P, Tavakoli S, Dashtimanesh A (2016) Coupled heave and pitch motions of planing hulls at non-zero heel angles. Appl Ocean Res 59:286–303CrossRef
89.
Zurück zum Zitat Tavakoli S, Ghadimi P, Dashtimanesh A (2017) A non-linear mathematical model for coupled heave, pitch and roll motions of a high-speed planing hull. J Eng Math 104(1):157–194CrossRefMATH Tavakoli S, Ghadimi P, Dashtimanesh A (2017) A non-linear mathematical model for coupled heave, pitch and roll motions of a high-speed planing hull. J Eng Math 104(1):157–194CrossRefMATH
90.
Zurück zum Zitat Ghadimi P, Tavakoli S, Dashtimanesh A (2016) An analytical procedure for time domain simulation of roll motion of the warped planing hulls. Proc Inst Mech Eng M J Eng Marit Environ 230(4):600–615 Ghadimi P, Tavakoli S, Dashtimanesh A (2016) An analytical procedure for time domain simulation of roll motion of the warped planing hulls. Proc Inst Mech Eng M J Eng Marit Environ 230(4):600–615
91.
92.
Zurück zum Zitat Tveitnes T, Flailie-Clarke AC, Varyani K (2008) An experimental investigation into the constant velocity water entry of wedge-shaped sections. Ocean Eng 35:1463–1478CrossRef Tveitnes T, Flailie-Clarke AC, Varyani K (2008) An experimental investigation into the constant velocity water entry of wedge-shaped sections. Ocean Eng 35:1463–1478CrossRef
93.
Zurück zum Zitat Xu L (1998) A theory for asymmetrical vessel impact and steady planing. Ph.D. Thesis, University of Michigan, Ann Arbor, Michigan, US Xu L (1998) A theory for asymmetrical vessel impact and steady planing. Ph.D. Thesis, University of Michigan, Ann Arbor, Michigan, US
94.
Zurück zum Zitat Toyoma Y (1993) Two-dimensional water impact of unsymmetrical bodies. J Soc Naval Archit Jpn 173:285–291CrossRef Toyoma Y (1993) Two-dimensional water impact of unsymmetrical bodies. J Soc Naval Archit Jpn 173:285–291CrossRef
Metadaten
Titel
Hydroelastic analysis of water impact of flexible asymmetric wedge with an oblique speed
Publikationsdatum
02.04.2018
Erschienen in
Meccanica / Ausgabe 10/2018
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-018-0846-y

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.