Skip to main content
Erschienen in: Journal of Nanoparticle Research 7/2022

01.07.2022 | Research paper

Hydrogen and humidity sensing characteristics of Nafion, Nafion/graphene, and Nafion/carbon nanotube resistivity sensors

verfasst von: Thye-Foo Choo, Nur Ubaidah Saidin, Nurazila Mat Zali, Kuan-Ying Kok

Erschienen in: Journal of Nanoparticle Research | Ausgabe 7/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, Nafion-based resistivity sensors were investigated for their efficiencies in hydrogen and humidity sensing characteristics. The sensors comprise of Nafion coated on two types of carbon nanomaterials, graphene and carbon nanotubes, respectively, as sensing platform interconnect between pairs of microelectrodes. The study showed that the hydrogen sensing of Nafion/CNT sensor was higher than Nafion/graphene sensor, and its response and recovery times were also faster. In the absence of carbon nanomaterials, Nafion-only sensor was also capable of detecting the presence of hydrogen but its sensing responses were lower with higher signal drift. In humidity sensing, both Nafion/CNT and Nafion/graphene sensors demonstrated lower and inverse humidity responses compared to Nafion-only sensor. Among the fabricated sensors, Nafion/CNT materials were found to offer promising sensing platform for application in real-time hydrogen gas and humidity detection.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Miyamoto A, Kuwaki Y, Sano T, Hatakeyama K, Quitain A, Sasaki M, Kida T (2017) Solid electrolyte gas sensor based on a proton-conducting graphene oxide membrane. ACS Omega 2:2994–3001CrossRef Miyamoto A, Kuwaki Y, Sano T, Hatakeyama K, Quitain A, Sasaki M, Kida T (2017) Solid electrolyte gas sensor based on a proton-conducting graphene oxide membrane. ACS Omega 2:2994–3001CrossRef
2.
Zurück zum Zitat Kuwata S, Miura N, Yamazoe N (1988) A solid-state amperometric oxygen sensor using NAFION membrane operative at room temperature. Chem Lett 17:1197–1200CrossRef Kuwata S, Miura N, Yamazoe N (1988) A solid-state amperometric oxygen sensor using NAFION membrane operative at room temperature. Chem Lett 17:1197–1200CrossRef
3.
Zurück zum Zitat Guan Y, Dai M, Liu T, Liu Y, Liu F, Liang X, Suo H, Sun P, Lu G (2016) Effect of the dispersants on the performance of fuel cell type CO sensor with Pt–C/Nafion electrodes. Sens Actuators, B Chem 230:61–69CrossRef Guan Y, Dai M, Liu T, Liu Y, Liu F, Liang X, Suo H, Sun P, Lu G (2016) Effect of the dispersants on the performance of fuel cell type CO sensor with Pt–C/Nafion electrodes. Sens Actuators, B Chem 230:61–69CrossRef
4.
Zurück zum Zitat Guan Y, Liu F, Wang B, Yang X, Liang X, Suo H, Sun P, Sun Y, Ma J, Zheng J, Wang Y, Lu G (2017) Highly sensitive amperometric Nafion-based CO sensor using Pt/C electrodes with different kinds of carbon materials. Sens Actuators, B Chem 239:696–703CrossRef Guan Y, Liu F, Wang B, Yang X, Liang X, Suo H, Sun P, Sun Y, Ma J, Zheng J, Wang Y, Lu G (2017) Highly sensitive amperometric Nafion-based CO sensor using Pt/C electrodes with different kinds of carbon materials. Sens Actuators, B Chem 239:696–703CrossRef
5.
Zurück zum Zitat Wallgren K, Sotiropoulos S (2009) Nafion-based co-planar electrode amperometric sensor for methanol determination in the gas phase. J Chem Sci 121:703–709CrossRef Wallgren K, Sotiropoulos S (2009) Nafion-based co-planar electrode amperometric sensor for methanol determination in the gas phase. J Chem Sci 121:703–709CrossRef
6.
Zurück zum Zitat Li W, Zhang Y, Hao X, Zhang Y, Yang X, Liang X, Liu F, Yan X, Zhang S, Lu G (2020) Nafion-based methanol gas sensor for fuel cell vehicles. Sens Actuators, B Chem 311:127905CrossRef Li W, Zhang Y, Hao X, Zhang Y, Yang X, Liang X, Liu F, Yan X, Zhang S, Lu G (2020) Nafion-based methanol gas sensor for fuel cell vehicles. Sens Actuators, B Chem 311:127905CrossRef
7.
Zurück zum Zitat Pašti IA, JanoševićLežaić A, Ćirić-Marjanović G, Mirsky VM (2016) Resistive gas sensors based on the composites of nanostructured carbonized polyaniline and Nafion. J Solid State Electrochem 20:3061–3069CrossRef Pašti IA, JanoševićLežaić A, Ćirić-Marjanović G, Mirsky VM (2016) Resistive gas sensors based on the composites of nanostructured carbonized polyaniline and Nafion. J Solid State Electrochem 20:3061–3069CrossRef
8.
Zurück zum Zitat Yang X, Zhang Y, Hao X, Song Y, Liang X, Liu F, Liu F, Sun P, Gao Y, Yan X, Lu G (2018) Nafion-based amperometric H2S sensor using Pt-Rh/C sensing electrode. Sens Actuators, B Chem 273:635–641CrossRef Yang X, Zhang Y, Hao X, Song Y, Liang X, Liu F, Liu F, Sun P, Gao Y, Yan X, Lu G (2018) Nafion-based amperometric H2S sensor using Pt-Rh/C sensing electrode. Sens Actuators, B Chem 273:635–641CrossRef
9.
Zurück zum Zitat Ho K, Hung W (2001) An amperometric NO2 gas sensor based on Pt/Nafion® Electrode. Sens Actuators, B Chem 79:11–16CrossRef Ho K, Hung W (2001) An amperometric NO2 gas sensor based on Pt/Nafion® Electrode. Sens Actuators, B Chem 79:11–16CrossRef
10.
Zurück zum Zitat Do J, Chang W (2004) Amperometric nitrogen dioxide gas sensor based on PAn/Au/Nafion® prepared by constant current and cyclic voltammetry methods. Sens Actuators, B Chem 101:97–106CrossRef Do J, Chang W (2004) Amperometric nitrogen dioxide gas sensor based on PAn/Au/Nafion® prepared by constant current and cyclic voltammetry methods. Sens Actuators, B Chem 101:97–106CrossRef
11.
Zurück zum Zitat Sakthivel M, Weppner W (2006) Response behaviour of a hydrogen sensor based on ionic conducting polymer-metal interfaces prepared by the chemical reduction method. Sensors 6:284–297CrossRef Sakthivel M, Weppner W (2006) Response behaviour of a hydrogen sensor based on ionic conducting polymer-metal interfaces prepared by the chemical reduction method. Sensors 6:284–297CrossRef
12.
Zurück zum Zitat Do J, Chen Y, Tsai M (2018) Planar solid-state amperometric hydrogen gas sensor based on Nafion®/Pt/nano-structured polyaniline/Au/Al2O3 electrode. Int J Hydrogen Energy 43:14848–14858CrossRef Do J, Chen Y, Tsai M (2018) Planar solid-state amperometric hydrogen gas sensor based on Nafion®/Pt/nano-structured polyaniline/Au/Al2O3 electrode. Int J Hydrogen Energy 43:14848–14858CrossRef
13.
Zurück zum Zitat Jung S, Lee EK, Kim JH, Lee S (2020) High-concentration Nafion-based hydrogen sensor for fuel-cell electric vehicles. Solid State Ionics 344:115134CrossRef Jung S, Lee EK, Kim JH, Lee S (2020) High-concentration Nafion-based hydrogen sensor for fuel-cell electric vehicles. Solid State Ionics 344:115134CrossRef
14.
Zurück zum Zitat Wu R, Sun Y, Lin C, Chen H, Chavali M (2006) Composite of TiO2 nanowires and Nafion as humidity sensor material. Sens Actuators, B Chem 115:198–204CrossRef Wu R, Sun Y, Lin C, Chen H, Chavali M (2006) Composite of TiO2 nanowires and Nafion as humidity sensor material. Sens Actuators, B Chem 115:198–204CrossRef
15.
Zurück zum Zitat Wang Y, Wang J, Hao M, Li B, Zhu Z, Gou X, Li L (2020) Rapid preparation of a Nafion/Ag NW composite film and its humidity sensing effect. RSC Adv 10:27447–27455CrossRef Wang Y, Wang J, Hao M, Li B, Zhu Z, Gou X, Li L (2020) Rapid preparation of a Nafion/Ag NW composite film and its humidity sensing effect. RSC Adv 10:27447–27455CrossRef
16.
Zurück zum Zitat Chiriaev S, Madsen ND, Rubahn H, Andersen SM (2017) Helium Ion Microscopy of proton exchange membrane fuel cell electrode structures. AIMS Mater Sci 4:1289–1304CrossRef Chiriaev S, Madsen ND, Rubahn H, Andersen SM (2017) Helium Ion Microscopy of proton exchange membrane fuel cell electrode structures. AIMS Mater Sci 4:1289–1304CrossRef
17.
Zurück zum Zitat Vinothkannan M, Kim AR, Yoo DJ (2021) Potential carbon nanomaterials as additives for state-of-the-art Nafion electrolyte in proton-exchange membrane fuel cells: a concise review. RSC Adv 11:18351–18370CrossRef Vinothkannan M, Kim AR, Yoo DJ (2021) Potential carbon nanomaterials as additives for state-of-the-art Nafion electrolyte in proton-exchange membrane fuel cells: a concise review. RSC Adv 11:18351–18370CrossRef
18.
Zurück zum Zitat Ansari S, Kelarakis A, Estevez L, Giannelis EP (2010) Oriented arrays of graphene in a polymer matrix by in situ reduction of graphite oxide nanosheets. Small 6:205–209CrossRef Ansari S, Kelarakis A, Estevez L, Giannelis EP (2010) Oriented arrays of graphene in a polymer matrix by in situ reduction of graphite oxide nanosheets. Small 6:205–209CrossRef
19.
Zurück zum Zitat Asmatulu R, Khan A, Adigoppula VK, Hwang G (2018) Enhanced transport properties of graphene-based, thin Nafion® membrane for polymer electrolyte membrane fuel cells. Int J Energy Res 42:508–519CrossRef Asmatulu R, Khan A, Adigoppula VK, Hwang G (2018) Enhanced transport properties of graphene-based, thin Nafion® membrane for polymer electrolyte membrane fuel cells. Int J Energy Res 42:508–519CrossRef
20.
Zurück zum Zitat Kannan R, Kakade BA, Pillai VK (2008) Polymer electrolyte fuel cells using Nafion-based composite membranes with functionalized carbon nanotubes. Angew Chem Int Ed 47:2653–2656CrossRef Kannan R, Kakade BA, Pillai VK (2008) Polymer electrolyte fuel cells using Nafion-based composite membranes with functionalized carbon nanotubes. Angew Chem Int Ed 47:2653–2656CrossRef
21.
Zurück zum Zitat Liu Y, Yi B, Shao Z, Xing D, Zhang H (2006) Carbon nanotubes reinforced Nafion composite membrane for fuel cell applications. Electrochem Solid-State Lett 9:A356CrossRef Liu Y, Yi B, Shao Z, Xing D, Zhang H (2006) Carbon nanotubes reinforced Nafion composite membrane for fuel cell applications. Electrochem Solid-State Lett 9:A356CrossRef
22.
Zurück zum Zitat Broka K, Ekdunge P (1997) Oxygen and hydrogen permeation properties and water uptake of Nafion® 117 membrane and recast film for PEM fuel cell. J Appl Electrochem 27:117–123CrossRef Broka K, Ekdunge P (1997) Oxygen and hydrogen permeation properties and water uptake of Nafion® 117 membrane and recast film for PEM fuel cell. J Appl Electrochem 27:117–123CrossRef
23.
Zurück zum Zitat Kusoglu A, Weber AZ (2017) New insights into perfluorinated sulfonic-acid ionomers. Chem Rev 117:987–1104CrossRef Kusoglu A, Weber AZ (2017) New insights into perfluorinated sulfonic-acid ionomers. Chem Rev 117:987–1104CrossRef
24.
Zurück zum Zitat Dariyal P, Sharma S, Chauhan GS, Pratap Singh B, Dhakate SR (2021) Recent trends in gas sensing via carbon nanomaterials: outlook and challenges. Nanoscale Adv 3:6514–6544CrossRef Dariyal P, Sharma S, Chauhan GS, Pratap Singh B, Dhakate SR (2021) Recent trends in gas sensing via carbon nanomaterials: outlook and challenges. Nanoscale Adv 3:6514–6544CrossRef
25.
Zurück zum Zitat Choo TF, Saidin NU, Kok KY (2018) A novel self-heating zinc oxide/indium tin oxide based hydrogen gas sensor: dual sensing mode of hydrogen gas detection. Chem Phys Lett 713:180–184CrossRef Choo TF, Saidin NU, Kok KY (2018) A novel self-heating zinc oxide/indium tin oxide based hydrogen gas sensor: dual sensing mode of hydrogen gas detection. Chem Phys Lett 713:180–184CrossRef
26.
Zurück zum Zitat Choo TF, Saidin NU, Kok KY (2018) Hydrogen sensing enhancement of zinc oxide nanorods via voltage biasing. R Soc Open Sci 5:172372CrossRef Choo TF, Saidin NU, Kok KY (2018) Hydrogen sensing enhancement of zinc oxide nanorods via voltage biasing. R Soc Open Sci 5:172372CrossRef
27.
Zurück zum Zitat Choo TF, Kok KY, Saidin NU, Mat Zali N (2021) Effect of chemical treatment and intrinsic resistance on the humidity sensitivity of pencil graphite sensing material coated on paper substrate. Sens Actuators A: Phys 332:113085CrossRef Choo TF, Kok KY, Saidin NU, Mat Zali N (2021) Effect of chemical treatment and intrinsic resistance on the humidity sensitivity of pencil graphite sensing material coated on paper substrate. Sens Actuators A: Phys 332:113085CrossRef
28.
Zurück zum Zitat Akhavan O (2015) Bacteriorhodopsin as a superior substitute for hydrazine in chemical reduction of single-layer graphene oxide sheets. Carbon 81:158–166CrossRef Akhavan O (2015) Bacteriorhodopsin as a superior substitute for hydrazine in chemical reduction of single-layer graphene oxide sheets. Carbon 81:158–166CrossRef
29.
Zurück zum Zitat Mukaddam M, Litwiller E, Pinnau I (2016) Gas sorption, diffusion, and permeation in Nafion. Macromol 49:280–286CrossRef Mukaddam M, Litwiller E, Pinnau I (2016) Gas sorption, diffusion, and permeation in Nafion. Macromol 49:280–286CrossRef
30.
Zurück zum Zitat Schalenbach M, Hoefner T, Paciok P, Carmo M, Lueke W, Stolten D (2015) Gas permeation through Nafion. Part 1: Measurements. J Phys Chem C 119:25145–25155CrossRef Schalenbach M, Hoefner T, Paciok P, Carmo M, Lueke W, Stolten D (2015) Gas permeation through Nafion. Part 1: Measurements. J Phys Chem C 119:25145–25155CrossRef
31.
Zurück zum Zitat Jung D, Han M, Lee GS (2014) Gas sensor using a multi-walled carbon nanotube sheet to detect hydrogen molecules. Sens Actuators, A 211:51–54CrossRef Jung D, Han M, Lee GS (2014) Gas sensor using a multi-walled carbon nanotube sheet to detect hydrogen molecules. Sens Actuators, A 211:51–54CrossRef
32.
Zurück zum Zitat Leng X, Luo D, Xu Z, Wang F (2018) Modified graphene oxide/Nafion composite humidity sensor and its linear response to the relative humidity. Sens Actuators, B Chem 257:372–381CrossRef Leng X, Luo D, Xu Z, Wang F (2018) Modified graphene oxide/Nafion composite humidity sensor and its linear response to the relative humidity. Sens Actuators, B Chem 257:372–381CrossRef
33.
Zurück zum Zitat Khalifa M, Wuzella G, Lammer H, Mahendran AR (2020) Smart paper from graphene coated cellulose for high-performance humidity and piezoresistive force sensor. Synth Met 266:116420CrossRef Khalifa M, Wuzella G, Lammer H, Mahendran AR (2020) Smart paper from graphene coated cellulose for high-performance humidity and piezoresistive force sensor. Synth Met 266:116420CrossRef
34.
Zurück zum Zitat Park J, Jang IR, Lee K, Kim HJ (2019) High efficiency crumpled carbon nanotube heaters for low drift hydrogen sensing. Sensors 19:3878CrossRef Park J, Jang IR, Lee K, Kim HJ (2019) High efficiency crumpled carbon nanotube heaters for low drift hydrogen sensing. Sensors 19:3878CrossRef
35.
Zurück zum Zitat Han M, Kim JK, Kang S, Jung D (2019) Post-treatment effects on the gas sensing performance of carbon nanotube sheets. Appl Surf Sci 481:597–603CrossRef Han M, Kim JK, Kang S, Jung D (2019) Post-treatment effects on the gas sensing performance of carbon nanotube sheets. Appl Surf Sci 481:597–603CrossRef
36.
Zurück zum Zitat Dhall S, Sood K, Nathawat R (2017) Room temperature hydrogen gas sensors of functionalized carbon nanotubes based hybrid nanostructure: role of Pt sputtered nanoparticles. Int J Hydrogen Energy 42:8392–8398CrossRef Dhall S, Sood K, Nathawat R (2017) Room temperature hydrogen gas sensors of functionalized carbon nanotubes based hybrid nanostructure: role of Pt sputtered nanoparticles. Int J Hydrogen Energy 42:8392–8398CrossRef
37.
Zurück zum Zitat Jaidev, Baro M, Ramaprabhu S (2018) Room temperature hydrogen gas sensing properties of mono dispersed platinum nanoparticles on graphene-like carbon-wrapped carbon nanotubes. Int Jf Hydrogen Energy 43:16421–16429CrossRef Jaidev, Baro M, Ramaprabhu S (2018) Room temperature hydrogen gas sensing properties of mono dispersed platinum nanoparticles on graphene-like carbon-wrapped carbon nanotubes. Int Jf Hydrogen Energy 43:16421–16429CrossRef
38.
Zurück zum Zitat Randeniya L, Martin P, Bendavid A (2012) Detection of hydrogen using multi-walled carbon-nanotube yarns coated with nanocrystalline Pd and Pd/Pt layered structures. Carbon 50:1786–1792CrossRef Randeniya L, Martin P, Bendavid A (2012) Detection of hydrogen using multi-walled carbon-nanotube yarns coated with nanocrystalline Pd and Pd/Pt layered structures. Carbon 50:1786–1792CrossRef
39.
Zurück zum Zitat Yan K, Toku Y, Ju Y (2019) Highly sensitive hydrogen sensor based on a new suspended structure of cross-stacked multiwall carbon nanotube sheet. Int J Hydrogen Energy 44:6344–6352CrossRef Yan K, Toku Y, Ju Y (2019) Highly sensitive hydrogen sensor based on a new suspended structure of cross-stacked multiwall carbon nanotube sheet. Int J Hydrogen Energy 44:6344–6352CrossRef
40.
Zurück zum Zitat Xiao M, Liang S, Han J, Zhong D, Liu J, Zhang Z, Peng L (2018) batch fabrication of ultrasensitive carbon nanotube hydrogen sensors with sub-ppm detection limit. ACS Sens 3:749–756CrossRef Xiao M, Liang S, Han J, Zhong D, Liu J, Zhang Z, Peng L (2018) batch fabrication of ultrasensitive carbon nanotube hydrogen sensors with sub-ppm detection limit. ACS Sens 3:749–756CrossRef
Metadaten
Titel
Hydrogen and humidity sensing characteristics of Nafion, Nafion/graphene, and Nafion/carbon nanotube resistivity sensors
verfasst von
Thye-Foo Choo
Nur Ubaidah Saidin
Nurazila Mat Zali
Kuan-Ying Kok
Publikationsdatum
01.07.2022
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 7/2022
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-022-05536-x

Weitere Artikel der Ausgabe 7/2022

Journal of Nanoparticle Research 7/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.