Skip to main content

2020 | OriginalPaper | Buchkapitel

2. Hydrogen Fuel Cell in Vehicle Propulsion: Performance, Efficiency, and Challenge

verfasst von : Jundika Candra Kurnia, Agus Pulung Sasmito

Erschienen in: Energy Efficiency in Mobility Systems

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter provides comprehensive review on the current development of polymer electrolyte membrane fuel cell (PEMFC) in automotive application to assist further development of hydrogen fuel cell and expedite its wide adoption on a commercial scale. Special attention is devoted to the performance and efficiency of PEMFC especially on vehicular application and key issues hindering further development of PEMFC to achieve its commercialization stage. Subsequently, various mitigation strategies proposed to address the aforementioned issues are outlined and discussed. Lastly, further research and development needs of the field are highlighted and discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K. Kojima, K. Fukazawa, Current status and future outlook of fuel cell vehicle development in Toyota. Meet. Abstr. MA2015-02(37), 1310 (2015) K. Kojima, K. Fukazawa, Current status and future outlook of fuel cell vehicle development in Toyota. Meet. Abstr. MA2015-02(37), 1310 (2015)
2.
Zurück zum Zitat T. Yoshida, K. Kojima, Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen society. Electrochem. Soc. Interface 24(2), 45–49 (2015)CrossRef T. Yoshida, K. Kojima, Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen society. Electrochem. Soc. Interface 24(2), 45–49 (2015)CrossRef
3.
Zurück zum Zitat T. Suzuki, Fuel cell stack technology of Toyota. Meet. Abstr. MA2016-02(38), 2560 (2016) T. Suzuki, Fuel cell stack technology of Toyota. Meet. Abstr. MA2016-02(38), 2560 (2016)
4.
Zurück zum Zitat S. Nistor, S. Dave, Z. Fan, M. Sooriyabandara, Technical and economic analysis of hydrogen refuelling. Appl. Energy 167, 211–220 (2016)CrossRef S. Nistor, S. Dave, Z. Fan, M. Sooriyabandara, Technical and economic analysis of hydrogen refuelling. Appl. Energy 167, 211–220 (2016)CrossRef
5.
Zurück zum Zitat J.C. Kurnia, A.P. Sasmito, T. Shamim, Performance evaluation of a PEM fuel cell stack with variable inlet flows under simulated driving cycle conditions. Appl. Energy 206, 751–764 (2017)CrossRef J.C. Kurnia, A.P. Sasmito, T. Shamim, Performance evaluation of a PEM fuel cell stack with variable inlet flows under simulated driving cycle conditions. Appl. Energy 206, 751–764 (2017)CrossRef
7.
Zurück zum Zitat N. Sulaiman, M.A. Hannan, A. Mohamed, E.H. Majlan, W.R. Wan Daud, A review on energy management system for fuel cell hybrid electric vehicle: Issues and challenges. Renew. Sustain. Energy Rev. 52, 802–814 (2015)CrossRef N. Sulaiman, M.A. Hannan, A. Mohamed, E.H. Majlan, W.R. Wan Daud, A review on energy management system for fuel cell hybrid electric vehicle: Issues and challenges. Renew. Sustain. Energy Rev. 52, 802–814 (2015)CrossRef
8.
Zurück zum Zitat C. Santoro, C. Arbizzani, B. Erable, I. Ieropoulos, Microbial fuel cells: From fundamentals to applications. A review. J. Power Sources 356, 225–244 (2017)CrossRef C. Santoro, C. Arbizzani, B. Erable, I. Ieropoulos, Microbial fuel cells: From fundamentals to applications. A review. J. Power Sources 356, 225–244 (2017)CrossRef
9.
Zurück zum Zitat K. Sopian, W.R. Wan Daud,“Challenges and future developments in proton exchange membrane fuel cells. Renew. Energy 31(5), 719–727 (2006)CrossRef K. Sopian, W.R. Wan Daud,“Challenges and future developments in proton exchange membrane fuel cells. Renew. Energy 31(5), 719–727 (2006)CrossRef
10.
Zurück zum Zitat A.P. Sasmito, Modeling of Transport Phenomena in Polymer Electrolyte Fuel Cell Stacks: Thermal, Water, and Gas Management. Thesis, National University of Singapore, 2010 A.P. Sasmito, Modeling of Transport Phenomena in Polymer Electrolyte Fuel Cell Stacks: Thermal, Water, and Gas Management. Thesis, National University of Singapore, 2010
11.
Zurück zum Zitat Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C. Adroher, A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl. Energy 88(4), 981–1007 (2011)CrossRef Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C. Adroher, A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl. Energy 88(4), 981–1007 (2011)CrossRef
12.
Zurück zum Zitat P. Koski, L.C. Pérez, J. Ihonen, Comparing anode gas recirculation with hydrogen purge and bleed in a novel PEMFC laboratory test cell configuration. Fuel Cells 15(3), 494–504 (2015)CrossRef P. Koski, L.C. Pérez, J. Ihonen, Comparing anode gas recirculation with hydrogen purge and bleed in a novel PEMFC laboratory test cell configuration. Fuel Cells 15(3), 494–504 (2015)CrossRef
13.
Zurück zum Zitat I.-S. Han, J. Jeong, H.K. Shin, PEM fuel-cell stack design for improved fuel utilization. Int. J. Hydrogen Energy 38(27), 11996–12006 (2013)CrossRef I.-S. Han, J. Jeong, H.K. Shin, PEM fuel-cell stack design for improved fuel utilization. Int. J. Hydrogen Energy 38(27), 11996–12006 (2013)CrossRef
14.
Zurück zum Zitat J.-J. Hwang, Effect of hydrogen delivery schemes on fuel cell efficiency. J. Power Sources 239, 54–63 (2013)CrossRef J.-J. Hwang, Effect of hydrogen delivery schemes on fuel cell efficiency. J. Power Sources 239, 54–63 (2013)CrossRef
15.
Zurück zum Zitat H.-Y. Lee, H.-C. Su, Y.-S. Chen, A gas management strategy for anode recirculation in a proton exchange membrane fuel cell. Int. J. Hydrogen Energy 43(7), 3803–3808 (2018)CrossRef H.-Y. Lee, H.-C. Su, Y.-S. Chen, A gas management strategy for anode recirculation in a proton exchange membrane fuel cell. Int. J. Hydrogen Energy 43(7), 3803–3808 (2018)CrossRef
16.
Zurück zum Zitat H. Marzougui, M. Amari, A. Kadri, F. Bacha, J. Ghouili, Energy management of fuel cell/battery/ultracapacitor in electrical hybrid vehicle. Int. J. Hydrogen Energy 42(13), 8857–8869 (2017)CrossRef H. Marzougui, M. Amari, A. Kadri, F. Bacha, J. Ghouili, Energy management of fuel cell/battery/ultracapacitor in electrical hybrid vehicle. Int. J. Hydrogen Energy 42(13), 8857–8869 (2017)CrossRef
17.
Zurück zum Zitat F. Barbir, PEM Fuel Cells: Theory and Practice (Academic Press, Cambridge, 2012) F. Barbir, PEM Fuel Cells: Theory and Practice (Academic Press, Cambridge, 2012)
18.
Zurück zum Zitat T.V. Nguyen, A gas distributor design for proton-exchange-membrane fuel cells. J. Electrochem. Soc. 143(5), L103–L105 (1996)CrossRef T.V. Nguyen, A gas distributor design for proton-exchange-membrane fuel cells. J. Electrochem. Soc. 143(5), L103–L105 (1996)CrossRef
19.
Zurück zum Zitat D.H. Jeon, S. Greenway, S. Shimpalee, J.W. Van Zee, The effect of serpentine flow-field designs on PEM fuel cell performance. Int. J. Hydrogen Energy 33(3), 1052–1066 (2008)CrossRef D.H. Jeon, S. Greenway, S. Shimpalee, J.W. Van Zee, The effect of serpentine flow-field designs on PEM fuel cell performance. Int. J. Hydrogen Energy 33(3), 1052–1066 (2008)CrossRef
20.
Zurück zum Zitat S.M. Rahgoshay, A.A. Ranjbar, A. Ramiar, E. Alizadeh, Thermal investigation of a PEM fuel cell with cooling flow field. Energy 134, 61–73 (2017)CrossRef S.M. Rahgoshay, A.A. Ranjbar, A. Ramiar, E. Alizadeh, Thermal investigation of a PEM fuel cell with cooling flow field. Energy 134, 61–73 (2017)CrossRef
21.
Zurück zum Zitat A.P. Sasmito, J.C. Kurnia, A.S. Mujumdar, Numerical evaluation of various gas and coolant channel designs for high performance liquid-cooled proton exchange membrane fuel cell stacks. Energy 44(1), 278–291 (2012)CrossRef A.P. Sasmito, J.C. Kurnia, A.S. Mujumdar, Numerical evaluation of various gas and coolant channel designs for high performance liquid-cooled proton exchange membrane fuel cell stacks. Energy 44(1), 278–291 (2012)CrossRef
22.
Zurück zum Zitat Y. Kerkoub, A. Benzaoui, F. Haddad, Y.K. Ziari, Channel to rib width ratio influence with various flow field designs on performance of PEM fuel cell. Energy Convers. Manag. 174, 260–275 (2018)CrossRef Y. Kerkoub, A. Benzaoui, F. Haddad, Y.K. Ziari, Channel to rib width ratio influence with various flow field designs on performance of PEM fuel cell. Energy Convers. Manag. 174, 260–275 (2018)CrossRef
23.
Zurück zum Zitat E. Afshari, M. Ziaei-Rad, Z. Shariati, A study on using metal foam as coolant fluid distributor in the polymer electrolyte membrane fuel cell. Int. J. Hydrogen Energy 41(3), 1902–1912 (2016)CrossRef E. Afshari, M. Ziaei-Rad, Z. Shariati, A study on using metal foam as coolant fluid distributor in the polymer electrolyte membrane fuel cell. Int. J. Hydrogen Energy 41(3), 1902–1912 (2016)CrossRef
24.
Zurück zum Zitat E. Alizadeh, S.M. Rahgoshay, M. Rahimi-Esbo, M. Khorshidian, S.H.M. Saadat, A novel cooling flow field design for polymer electrolyte membrane fuel cell stack. Int. J. Hydrogen Energy 41(20), 8525–8532 (2016)CrossRef E. Alizadeh, S.M. Rahgoshay, M. Rahimi-Esbo, M. Khorshidian, S.H.M. Saadat, A novel cooling flow field design for polymer electrolyte membrane fuel cell stack. Int. J. Hydrogen Energy 41(20), 8525–8532 (2016)CrossRef
25.
Zurück zum Zitat F.N. Büchi et al., On the efficiency of an advanced automotive fuel cell system. Fuel Cells 7(2), 159–164 (2007)CrossRef F.N. Büchi et al., On the efficiency of an advanced automotive fuel cell system. Fuel Cells 7(2), 159–164 (2007)CrossRef
26.
Zurück zum Zitat J. Han, M. Kokkolaras, P.Y. Papalambros, Optimal design of hybrid fuel cell vehicles. J. Fuel Cell Sci. Technol. 5(4), 041014–041014 (2008)CrossRef J. Han, M. Kokkolaras, P.Y. Papalambros, Optimal design of hybrid fuel cell vehicles. J. Fuel Cell Sci. Technol. 5(4), 041014–041014 (2008)CrossRef
27.
Zurück zum Zitat J. Bang, H.-S. Kim, D.-H. Lee, K. Min, Study on operating characteristics of fuel cell powered electric vehicle with different air feeding systems. J. Mech. Sci. Technol. 22(8), 1602–1611 (2008)CrossRef J. Bang, H.-S. Kim, D.-H. Lee, K. Min, Study on operating characteristics of fuel cell powered electric vehicle with different air feeding systems. J. Mech. Sci. Technol. 22(8), 1602–1611 (2008)CrossRef
28.
Zurück zum Zitat A. Gomez, A.P. Sasmito, T. Shamim, Investigation of the purging effect on a dead-end anode PEM fuel cell-powered vehicle during segments of a European driving cycle. Energy Convers. Manage. 106, 951–957 (2015)CrossRef A. Gomez, A.P. Sasmito, T. Shamim, Investigation of the purging effect on a dead-end anode PEM fuel cell-powered vehicle during segments of a European driving cycle. Energy Convers. Manage. 106, 951–957 (2015)CrossRef
29.
Zurück zum Zitat H. Al-Zeyoudi, A.P. Sasmito, T. Shamim, Performance evaluation of an open-cathode PEM fuel cell stack under ambient conditions: case study of United Arab Emirates. Energy Convers. Manag. 105, 798–809 (2015)CrossRef H. Al-Zeyoudi, A.P. Sasmito, T. Shamim, Performance evaluation of an open-cathode PEM fuel cell stack under ambient conditions: case study of United Arab Emirates. Energy Convers. Manag. 105, 798–809 (2015)CrossRef
30.
Zurück zum Zitat A. Fly, R.H. Thring, A comparison of evaporative and liquid cooling methods for fuel cell vehicles. Int. J. Hydrogen Energy 41(32), 14217–14229 (2016)CrossRef A. Fly, R.H. Thring, A comparison of evaporative and liquid cooling methods for fuel cell vehicles. Int. J. Hydrogen Energy 41(32), 14217–14229 (2016)CrossRef
31.
Zurück zum Zitat D. Feroldi, M. Serra, J. Riera, Energy Management Strategies based on efficiency map for Fuel Cell Hybrid Vehicles. J. Power Sources 190(2), 387–401 (2009)CrossRef D. Feroldi, M. Serra, J. Riera, Energy Management Strategies based on efficiency map for Fuel Cell Hybrid Vehicles. J. Power Sources 190(2), 387–401 (2009)CrossRef
32.
Zurück zum Zitat D. Feroldi, M. Carignano, Sizing for fuel cell/supercapacitor hybrid vehicles based on stochastic driving cycles. Appl. Energy 183, 645–658 (2016)CrossRef D. Feroldi, M. Carignano, Sizing for fuel cell/supercapacitor hybrid vehicles based on stochastic driving cycles. Appl. Energy 183, 645–658 (2016)CrossRef
33.
Zurück zum Zitat C. Liu, L. Liu, Optimal power source sizing of fuel cell hybrid vehicles based on Pontryagin’s minimum principle. Int. J. Hydrogen Energy 40(26), 8454–8464 (2015)CrossRef C. Liu, L. Liu, Optimal power source sizing of fuel cell hybrid vehicles based on Pontryagin’s minimum principle. Int. J. Hydrogen Energy 40(26), 8454–8464 (2015)CrossRef
34.
Zurück zum Zitat L. Xu, C.D. Mueller, J. Li, M. Ouyang, Z. Hu, Multi-objective component sizing based on optimal energy management strategy of fuel cell electric vehicles. Appl. Energy 157, 664–674 (2015)CrossRef L. Xu, C.D. Mueller, J. Li, M. Ouyang, Z. Hu, Multi-objective component sizing based on optimal energy management strategy of fuel cell electric vehicles. Appl. Energy 157, 664–674 (2015)CrossRef
35.
Zurück zum Zitat M.G. Carignano, R. Costa-Castelló, V. Roda, N.M. Nigro, S. Junco, D. Feroldi, Energy management strategy for fuel cell-supercapacitor hybrid vehicles based on prediction of energy demand. J. Power Sources 360, 419–433 (2017)CrossRef M.G. Carignano, R. Costa-Castelló, V. Roda, N.M. Nigro, S. Junco, D. Feroldi, Energy management strategy for fuel cell-supercapacitor hybrid vehicles based on prediction of energy demand. J. Power Sources 360, 419–433 (2017)CrossRef
36.
Zurück zum Zitat M. Li, X. Zhang, G. Li, A comparative assessment of battery and fuel cell electric vehicles using a well-to-wheel analysis. Energy 94, 693–704 (2016)CrossRef M. Li, X. Zhang, G. Li, A comparative assessment of battery and fuel cell electric vehicles using a well-to-wheel analysis. Energy 94, 693–704 (2016)CrossRef
37.
Zurück zum Zitat S. Williamson, M. Lukic, A. Emadi, Comprehensive drive train efficiency analysis of hybrid electric and fuel cell vehicles based on motor-controller efficiency modeling. IEEE Trans. Power Electron. 21(3), 730–740 (2006)CrossRef S. Williamson, M. Lukic, A. Emadi, Comprehensive drive train efficiency analysis of hybrid electric and fuel cell vehicles based on motor-controller efficiency modeling. IEEE Trans. Power Electron. 21(3), 730–740 (2006)CrossRef
38.
Zurück zum Zitat A.C. Turkmen, S. Solmaz, C. Celik, Analysis of fuel cell vehicles with advisor software. Renew. Sustain. Energy Rev. 70, 1066–1071 (2017)CrossRef A.C. Turkmen, S. Solmaz, C. Celik, Analysis of fuel cell vehicles with advisor software. Renew. Sustain. Energy Rev. 70, 1066–1071 (2017)CrossRef
39.
Zurück zum Zitat K. Ettihir, M. Higuita Cano, L. Boulon, K. Agbossou, Design of an adaptive EMS for fuel cell vehicles. Intl. J. Hydrog. Energy 42(2), 1481–1489 (2017)CrossRef K. Ettihir, M. Higuita Cano, L. Boulon, K. Agbossou, Design of an adaptive EMS for fuel cell vehicles. Intl. J. Hydrog. Energy 42(2), 1481–1489 (2017)CrossRef
40.
Zurück zum Zitat S. Ahmadi, S.M.T. Bathaee, Multi-objective genetic optimization of the fuel cell hybrid vehicle supervisory system: fuzzy logic and operating mode control strategies. Int. J. Hydrogen Energy 40(36), 12512–12521 (2015)CrossRef S. Ahmadi, S.M.T. Bathaee, Multi-objective genetic optimization of the fuel cell hybrid vehicle supervisory system: fuzzy logic and operating mode control strategies. Int. J. Hydrogen Energy 40(36), 12512–12521 (2015)CrossRef
41.
Zurück zum Zitat T. Fletcher, R. Thring, M. Watkinson, An energy management strategy to concurrently optimise fuel consumption & PEM fuel cell lifetime in a hybrid vehicle. Int. J. Hydrogen Energy 41(46), 21503–21515 (2016)CrossRef T. Fletcher, R. Thring, M. Watkinson, An energy management strategy to concurrently optimise fuel consumption & PEM fuel cell lifetime in a hybrid vehicle. Int. J. Hydrogen Energy 41(46), 21503–21515 (2016)CrossRef
42.
Zurück zum Zitat M.M. Whiston, I.L. Azevedo, S. Litster, K.S. Whitefoot, C. Samaras, J.F. Whitacre, Expert assessments of the cost and expected future performance of proton exchange membrane fuel cells for vehicles. PNAS 116(11), 4899–4904 (2019)CrossRef M.M. Whiston, I.L. Azevedo, S. Litster, K.S. Whitefoot, C. Samaras, J.F. Whitacre, Expert assessments of the cost and expected future performance of proton exchange membrane fuel cells for vehicles. PNAS 116(11), 4899–4904 (2019)CrossRef
43.
Zurück zum Zitat V. Yarlagadda et al., Boosting fuel cell performance with accessible carbon mesopores. ACS Energy Lett. 3(3), 618–621 (2018)CrossRef V. Yarlagadda et al., Boosting fuel cell performance with accessible carbon mesopores. ACS Energy Lett. 3(3), 618–621 (2018)CrossRef
44.
Zurück zum Zitat A. de Frank Bruijn, G.J.M. Janssen, PEM fuel cell materials: Costs, performance, and durability, in Fuel Cells and Hydrogen Production: A Volume in the Encyclopedia of Sustainability Science and Technology, 2nd Edition, ed. T.E. Lipman, A.Z. Weber (Springer, New York, 2019), pp. 195–234 A. de Frank Bruijn, G.J.M. Janssen, PEM fuel cell materials: Costs, performance, and durability, in Fuel Cells and Hydrogen Production: A Volume in the Encyclopedia of Sustainability Science and Technology, 2nd Edition, ed. T.E. Lipman, A.Z. Weber (Springer, New York, 2019), pp. 195–234
45.
Zurück zum Zitat J. Li et al., Fuel cell system degradation analysis of a Chinese plug-in hybrid fuel cell city bus. Int. J. Hydrogen Energy 41(34), 15295–15310 (2016)CrossRef J. Li et al., Fuel cell system degradation analysis of a Chinese plug-in hybrid fuel cell city bus. Int. J. Hydrogen Energy 41(34), 15295–15310 (2016)CrossRef
46.
Zurück zum Zitat A. Burkert, Fuel cells—From euphoria to disillusionment. ATZ Worldw 121(4), 8–13 (2019)CrossRef A. Burkert, Fuel cells—From euphoria to disillusionment. ATZ Worldw 121(4), 8–13 (2019)CrossRef
47.
Zurück zum Zitat M. Li et al., Review on the research of hydrogen storage system fast refueling in fuel cell vehicle. Intl. J. Hydrogen Energy (2019) M. Li et al., Review on the research of hydrogen storage system fast refueling in fuel cell vehicle. Intl. J. Hydrogen Energy (2019)
48.
Zurück zum Zitat S. Niaz, T. Manzoor, A.H. Pandith, Hydrogen storage: materials, methods and perspectives. Renew. Sustain. Energy Rev. 50, 457–469 (2015)CrossRef S. Niaz, T. Manzoor, A.H. Pandith, Hydrogen storage: materials, methods and perspectives. Renew. Sustain. Energy Rev. 50, 457–469 (2015)CrossRef
49.
Zurück zum Zitat M. Hirscher, Handbook of Hydrogen Storage: New Materials for Future Energy Storage (Wiley, Hoboken, 2010) M. Hirscher, Handbook of Hydrogen Storage: New Materials for Future Energy Storage (Wiley, Hoboken, 2010)
50.
Zurück zum Zitat D. Zhu, D. Chabane, Y. Ait-Amirat, A. N’Diaye, A. Djerdir, Estimation of the state of charge of a hydride hydrogen tank for vehicle applications, in 2017 IEEE Vehicle Power and Propulsion Conference (VPPC) (2017), pp. 1–6 D. Zhu, D. Chabane, Y. Ait-Amirat, A. N’Diaye, A. Djerdir, Estimation of the state of charge of a hydride hydrogen tank for vehicle applications, in 2017 IEEE Vehicle Power and Propulsion Conference (VPPC) (2017), pp. 1–6
51.
Zurück zum Zitat I. Dincer, C. Acar, Review and evaluation of hydrogen production methods for better sustainability. Int. J. Hydrogen Energy 40(34), 11094–11111 (2015)CrossRef I. Dincer, C. Acar, Review and evaluation of hydrogen production methods for better sustainability. Int. J. Hydrogen Energy 40(34), 11094–11111 (2015)CrossRef
52.
Zurück zum Zitat A. Kongkanand, N.P. Subramanian, Y. Yu, Z. Liu, H. Igarashi, D.A. Muller, Achieving high-power PEM fuel cell performance with an ultralow-Pt-content core-shell catalyst. ACS Catal. 6(3), 1578–1583 (2016)CrossRef A. Kongkanand, N.P. Subramanian, Y. Yu, Z. Liu, H. Igarashi, D.A. Muller, Achieving high-power PEM fuel cell performance with an ultralow-Pt-content core-shell catalyst. ACS Catal. 6(3), 1578–1583 (2016)CrossRef
53.
Zurück zum Zitat L. An, T.S. Zhao, X.L. Zhou, X.H. Yan, C.Y. Jung, A low-cost, high-performance zinc–hydrogen peroxide fuel cell. J. Power Sources 275, 831–834 (2015)CrossRef L. An, T.S. Zhao, X.L. Zhou, X.H. Yan, C.Y. Jung, A low-cost, high-performance zinc–hydrogen peroxide fuel cell. J. Power Sources 275, 831–834 (2015)CrossRef
54.
Zurück zum Zitat M.F. Ezzat, I. Dincer, Development, analysis and assessment of a fuel cell and solar photovoltaic system powered vehicle. Energy Convers. Manag. 129, 284–292 (2016)CrossRef M.F. Ezzat, I. Dincer, Development, analysis and assessment of a fuel cell and solar photovoltaic system powered vehicle. Energy Convers. Manag. 129, 284–292 (2016)CrossRef
55.
Zurück zum Zitat C. Lv, J. Zhang, Y. Li, Y. Yuan, Mechanism analysis and evaluation methodology of regenerative braking contribution to energy efficiency improvement of electrified vehicles. Energy Convers. Manag. 92, 469–482 (2015)CrossRef C. Lv, J. Zhang, Y. Li, Y. Yuan, Mechanism analysis and evaluation methodology of regenerative braking contribution to energy efficiency improvement of electrified vehicles. Energy Convers. Manag. 92, 469–482 (2015)CrossRef
56.
Zurück zum Zitat H. Fathabadi, Fuel cell hybrid electric vehicle (FCHEV): Novel fuel cell/SC hybrid power generation system. Energy Convers. Manag. 156, 192–201 (2018)CrossRef H. Fathabadi, Fuel cell hybrid electric vehicle (FCHEV): Novel fuel cell/SC hybrid power generation system. Energy Convers. Manag. 156, 192–201 (2018)CrossRef
Metadaten
Titel
Hydrogen Fuel Cell in Vehicle Propulsion: Performance, Efficiency, and Challenge
verfasst von
Jundika Candra Kurnia
Agus Pulung Sasmito
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-0102-9_2