Skip to main content

2015 | OriginalPaper | Buchkapitel

6. Hydrogen Production from Biowaste

verfasst von : Bernardo Ruggeri, Tonia Tommasi, Sara Sanfilippo

Erschienen in: BioH2 & BioCH4 Through Anaerobic Digestion

Verlag: Springer London

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter the feasibility of hydrogen production from organic waste (OW) is highlighted. Possible sources are the residue of municipal solid waste (MSW) sorting by mechanical/physical treatment, the OW separately collected from households and the waste produced along the entire food production chain.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R.E.H. Sims, The Brilliance of Bioenergy, in Business and in Practise (James and James Press, London, 2002) R.E.H. Sims, The Brilliance of Bioenergy, in Business and in Practise (James and James Press, London, 2002)
2.
Zurück zum Zitat G. Evans, Biowaste and Biological Waste Treatment (James and James Press, London, 2001) G. Evans, Biowaste and Biological Waste Treatment (James and James Press, London, 2001)
3.
Zurück zum Zitat D.M. Mousdale, Biofuels-Biotechnology, Chemistry and Sustainable Development (CRC Press, Boca Raton, FL, 2008) D.M. Mousdale, Biofuels-Biotechnology, Chemistry and Sustainable Development (CRC Press, Boca Raton, FL, 2008)
4.
Zurück zum Zitat H. Röper, Perspektiven der industriellen Nutzung nachwachsender Rohstoffe, insbesondere von Stärke und Zucker. Mitt Fachgruppe Umweltchem Ökotoxikol Ges Dtsch Chemie 7(2), 6–12 (2001) H. Röper, Perspektiven der industriellen Nutzung nachwachsender Rohstoffe, insbesondere von Stärke und Zucker. Mitt Fachgruppe Umweltchem Ökotoxikol Ges Dtsch Chemie 7(2), 6–12 (2001)
5.
Zurück zum Zitat N. Mosier, C. Wyman, B. Dale, R. Elander, Y.Y. Lee, M. Holtzapple, M. Ladisch, Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96(6), 673–686 (2005)CrossRef N. Mosier, C. Wyman, B. Dale, R. Elander, Y.Y. Lee, M. Holtzapple, M. Ladisch, Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96(6), 673–686 (2005)CrossRef
6.
Zurück zum Zitat L.T. Fan, Y. Lee, D.H. Beardmore, Mechanism of the enzymatic hydrolysis of cellulose: effects of major structural features of cellulose on enzymatic hydrolysis. Biotechnol. Bioeng. 22(1), 177–199 (1980)CrossRef L.T. Fan, Y. Lee, D.H. Beardmore, Mechanism of the enzymatic hydrolysis of cellulose: effects of major structural features of cellulose on enzymatic hydrolysis. Biotechnol. Bioeng. 22(1), 177–199 (1980)CrossRef
7.
Zurück zum Zitat C.E. Wyman, Handbook on Bioethanol: Production and Utilization, Applied Energy Technology Series (CRC Press, Taylor and Francis, Washington DC, 1996) C.E. Wyman, Handbook on Bioethanol: Production and Utilization, Applied Energy Technology Series (CRC Press, Taylor and Francis, Washington DC, 1996)
8.
Zurück zum Zitat L. Zhu, J.P. O’Dwyer, V.S. Chang, C.B. Granda, M.T. Holtzapple, Structural features affecting biomass enzymatic digestibility. Bioresour. Technol. 99(19), 3817–3828 (2008) L. Zhu, J.P. O’Dwyer, V.S. Chang, C.B. Granda, M.T. Holtzapple, Structural features affecting biomass enzymatic digestibility. Bioresour. Technol. 99(19), 3817–3828 (2008)
9.
Zurück zum Zitat A. Berlin, M. Balakshin, N. Gilkes, J. Kadla, V. Maximenko, S. Kubo, J. Saddler, Inhibition of cellulase, xylanase and beta-glucosidase activities by softwood lignin preparations. J. Biotechnol. 125(2), 198–209 (2006)CrossRef A. Berlin, M. Balakshin, N. Gilkes, J. Kadla, V. Maximenko, S. Kubo, J. Saddler, Inhibition of cellulase, xylanase and beta-glucosidase activities by softwood lignin preparations. J. Biotechnol. 125(2), 198–209 (2006)CrossRef
10.
Zurück zum Zitat B. Ruggeri, M. Bernardi, T. Tommasi, On the pretreatment of municipal organic waste towards fuel production: a review. Int. J. Environ. Pollut. 49, 226–250 (2012)CrossRef B. Ruggeri, M. Bernardi, T. Tommasi, On the pretreatment of municipal organic waste towards fuel production: a review. Int. J. Environ. Pollut. 49, 226–250 (2012)CrossRef
11.
Zurück zum Zitat C.E. Wyman, Handbook on Bioethanol: Production and Utilization (CRC Press, Boca Raton, FL, 1996) C.E. Wyman, Handbook on Bioethanol: Production and Utilization (CRC Press, Boca Raton, FL, 1996)
12.
Zurück zum Zitat Y. Sun, J. Cheng, Hydrolysis of lignocellulosic materials for ethanol production. Bioresour. Technol. 83, 1–11 (2002)CrossRef Y. Sun, J. Cheng, Hydrolysis of lignocellulosic materials for ethanol production. Bioresour. Technol. 83, 1–11 (2002)CrossRef
13.
Zurück zum Zitat W.R. Grous, A.O. Converse, H.E. Grethlein, Effect of steam explosion pretreatment on pore size and enzymatic hydrolysis of poplar. Enzym. Microb. Technol. 8(5), 274–280 (1986)CrossRef W.R. Grous, A.O. Converse, H.E. Grethlein, Effect of steam explosion pretreatment on pore size and enzymatic hydrolysis of poplar. Enzym. Microb. Technol. 8(5), 274–280 (1986)CrossRef
14.
Zurück zum Zitat T.A. Clark, K.L. Mackie, Steam Explosion of the Softwood Pinus Radiata with sulphur dioxide addition. I. Process optimization. J. Wood Chem. Technol. 7(3), 373–403 (1987)CrossRef T.A. Clark, K.L. Mackie, Steam Explosion of the Softwood Pinus Radiata with sulphur dioxide addition. I. Process optimization. J. Wood Chem. Technol. 7(3), 373–403 (1987)CrossRef
15.
Zurück zum Zitat O.E. Solheim, Method of and arrangement for continuous hydrolysis of organic material. US Patent 0,168,990 (2004) O.E. Solheim, Method of and arrangement for continuous hydrolysis of organic material. US Patent 0,168,990 (2004)
16.
Zurück zum Zitat J. Kim, C. Park, T.H. Kim, M. Lee, S. Kim, S.W. Kim, J. Lee, Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J. Biosci. Bioeng. 95, 271–275 (2003)CrossRef J. Kim, C. Park, T.H. Kim, M. Lee, S. Kim, S.W. Kim, J. Lee, Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J. Biosci. Bioeng. 95, 271–275 (2003)CrossRef
17.
Zurück zum Zitat V.P. Puri, H. Mamers, Explosive pretreatment of lignocellulosic residues with High-pressure Carbon dioxide for the production of fermentation substrates. Biotechnol. Bioeng. 25, 3149–3161 (1983)CrossRef V.P. Puri, H. Mamers, Explosive pretreatment of lignocellulosic residues with High-pressure Carbon dioxide for the production of fermentation substrates. Biotechnol. Bioeng. 25, 3149–3161 (1983)CrossRef
18.
Zurück zum Zitat W.P. Xiao, W.W. Clarkson, Acid solubilization of lignin and bioconversion of treated newsprint to methane. Biodegradation 8, 61–66 (1997)CrossRef W.P. Xiao, W.W. Clarkson, Acid solubilization of lignin and bioconversion of treated newsprint to methane. Biodegradation 8, 61–66 (1997)CrossRef
19.
Zurück zum Zitat T. Jeoh, C.I. Ishizawa, M.F. Davis, M.E. Himmel, W.S. Adney, D.K. Johnson, Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol. Bioeng. 98(1), 112–122 (2007)CrossRef T. Jeoh, C.I. Ishizawa, M.F. Davis, M.E. Himmel, W.S. Adney, D.K. Johnson, Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol. Bioeng. 98(1), 112–122 (2007)CrossRef
20.
Zurück zum Zitat L.T. Fan, M.M. Gharpuray, Y.H. Lee, Cellulose Hydrolysis Biotechnology (Monographs Springer, Berlin, 1987)CrossRef L.T. Fan, M.M. Gharpuray, Y.H. Lee, Cellulose Hydrolysis Biotechnology (Monographs Springer, Berlin, 1987)CrossRef
21.
Zurück zum Zitat M. Beccari, M. Majone, M.P. Papini, L. Torrisi, Enhancement of anaerobic treatability of olive oil mill effluents by addition of Ca(OH)2 and bentonite without intermediate solid/liquid separation. Water Sci. Technol. 43, 275–282 (2001) M. Beccari, M. Majone, M.P. Papini, L. Torrisi, Enhancement of anaerobic treatability of olive oil mill effluents by addition of Ca(OH)2 and bentonite without intermediate solid/liquid separation. Water Sci. Technol. 43, 275–282 (2001)
22.
Zurück zum Zitat S. Ghosh, M.P. Henry, A. Sajjad, M.C. Mensiger, J.L. Arora, Pilot-scale gasification of municipal solid wastes by high-rate and two-phase anaerobic digestion (TPAD). Water Sci. Technol. 41(3), 101–110 (2000) S. Ghosh, M.P. Henry, A. Sajjad, M.C. Mensiger, J.L. Arora, Pilot-scale gasification of municipal solid wastes by high-rate and two-phase anaerobic digestion (TPAD). Water Sci. Technol. 41(3), 101–110 (2000)
23.
Zurück zum Zitat N.H.M. Yasin, T. Mumtaz, M.A. Hassan, N.A.A. Rahman, Food waste and food processing waste for biohydrogen production: a review. J. Environ. Manage. 130, 375–385 (2013)CrossRef N.H.M. Yasin, T. Mumtaz, M.A. Hassan, N.A.A. Rahman, Food waste and food processing waste for biohydrogen production: a review. J. Environ. Manage. 130, 375–385 (2013)CrossRef
24.
Zurück zum Zitat G. De Gioannis, A. Muntoni, A. Polettini, R. Pomi, A review of dark fermentative hydrogen production from biodegradable municipal waste fractions. Waste Manag. 33, 1345–1361 (2013)CrossRef G. De Gioannis, A. Muntoni, A. Polettini, R. Pomi, A review of dark fermentative hydrogen production from biodegradable municipal waste fractions. Waste Manag. 33, 1345–1361 (2013)CrossRef
25.
Zurück zum Zitat K. Vijayaraghavan, D. Ahmad, M.K. Ibrahim, Biohydrogen generation from jackfruit peel using anaerobic contact filter. Int. J. Hydrogen Energy 31, 569–579 (2006)CrossRef K. Vijayaraghavan, D. Ahmad, M.K. Ibrahim, Biohydrogen generation from jackfruit peel using anaerobic contact filter. Int. J. Hydrogen Energy 31, 569–579 (2006)CrossRef
26.
Zurück zum Zitat S.W. Van Ginkel, S.E. Oha, B.E. Logan, Biohydrogen gas production from food processing and domestic wastewaters. Int. J. Hydrogen Energy 30, 1535–1542 (2005)CrossRef S.W. Van Ginkel, S.E. Oha, B.E. Logan, Biohydrogen gas production from food processing and domestic wastewaters. Int. J. Hydrogen Energy 30, 1535–1542 (2005)CrossRef
27.
Zurück zum Zitat S.K. Han, H.S. Shin, Biohydrogen production by anaerobic fermentation of food waste. Int. J. Hydrogen Energy 29, 569–577 (2004)CrossRef S.K. Han, H.S. Shin, Biohydrogen production by anaerobic fermentation of food waste. Int. J. Hydrogen Energy 29, 569–577 (2004)CrossRef
28.
Zurück zum Zitat N.Q. Ren, J.Z. Li, B.K. Li, Y. Wang, S.R. Liu, Biohydrogen production from molasses by anaerobic fermentation with a pilot scale bioreactor system. Int. J. Hydrogen Energy 31, 2147–2157 (2006)CrossRef N.Q. Ren, J.Z. Li, B.K. Li, Y. Wang, S.R. Liu, Biohydrogen production from molasses by anaerobic fermentation with a pilot scale bioreactor system. Int. J. Hydrogen Energy 31, 2147–2157 (2006)CrossRef
29.
Zurück zum Zitat H.H.P. Fang, C.L. Li, T. Zhang, Acidophilic biohydrogen production from rice slurry. Int. J. Hydrogen Energy 31, 683–692 (2006)CrossRef H.H.P. Fang, C.L. Li, T. Zhang, Acidophilic biohydrogen production from rice slurry. Int. J. Hydrogen Energy 31, 683–692 (2006)CrossRef
30.
Zurück zum Zitat Y. Akutsu, D.Y. Lee, Y.Y. Li, T. Noike, Hydrogen production potential and fermentative characteristics of various substrates with different heat-pretreated natural microflora. Int. J. Hydrogen Energy 34, 5365–5372 (2009)CrossRef Y. Akutsu, D.Y. Lee, Y.Y. Li, T. Noike, Hydrogen production potential and fermentative characteristics of various substrates with different heat-pretreated natural microflora. Int. J. Hydrogen Energy 34, 5365–5372 (2009)CrossRef
31.
Zurück zum Zitat M. Cui, Z. Yuan, X. Zhi, J. Shen, Optimization of biohydrogen production from beer lees using anaerobic mixed bacteria. Int. J. Hydrogen Energy 34, 7971–7978 (2009)CrossRef M. Cui, Z. Yuan, X. Zhi, J. Shen, Optimization of biohydrogen production from beer lees using anaerobic mixed bacteria. Int. J. Hydrogen Energy 34, 7971–7978 (2009)CrossRef
32.
Zurück zum Zitat E. Castello, C. Garcia y Santos, T. Iglesias, G. Paolino, J. Wenzel, L. Borzacconi, C. Etchebehere, Feasibility of biohydrogen production from cheese whey using a UASB: links between microbial community and reactor performance, Int. J. Hydrogen Energy 34, 5674–5682 (2009) E. Castello, C. Garcia y Santos, T. Iglesias, G. Paolino, J. Wenzel, L. Borzacconi, C. Etchebehere, Feasibility of biohydrogen production from cheese whey using a UASB: links between microbial community and reactor performance, Int. J. Hydrogen Energy 34, 5674–5682 (2009)
33.
Zurück zum Zitat S. Jayalakshmi, K. Joseph, V. Sukumaran, Biohydrogen generation from kitchen waste in an inclined plug flow reactor. Int. J. Hydrogen Energy 34, 8854–8858 (2009)CrossRef S. Jayalakshmi, K. Joseph, V. Sukumaran, Biohydrogen generation from kitchen waste in an inclined plug flow reactor. Int. J. Hydrogen Energy 34, 8854–8858 (2009)CrossRef
34.
Zurück zum Zitat X. Wu, J. Zhu, C. Dong, C. Miller, Y. Li, L. Wang, W. Yao, Continuous biohydrogen production from liquid swine manure supplemented with glucose using an anaerobic sequencing batch reactor. Int. J. Hydrogen Energy 34, 6636–6645 (2009)CrossRef X. Wu, J. Zhu, C. Dong, C. Miller, Y. Li, L. Wang, W. Yao, Continuous biohydrogen production from liquid swine manure supplemented with glucose using an anaerobic sequencing batch reactor. Int. J. Hydrogen Energy 34, 6636–6645 (2009)CrossRef
35.
Zurück zum Zitat K. Vijayaraghavan, D. Ahmad, Biohydrogen generation from palm oil effluent using anaerobic contact filter. Int. J. Hydrogen Energy 31, 1284–1291 (2006)CrossRef K. Vijayaraghavan, D. Ahmad, Biohydrogen generation from palm oil effluent using anaerobic contact filter. Int. J. Hydrogen Energy 31, 1284–1291 (2006)CrossRef
36.
Zurück zum Zitat B. Ruggeri, T. Tommasi, Efficiency and efficacy of pretreatment and bioreaction for bio-H2 energy production from organic waste. Int. J. Hydrogen Energy 37, 6491–6502 (2012)CrossRef B. Ruggeri, T. Tommasi, Efficiency and efficacy of pretreatment and bioreaction for bio-H2 energy production from organic waste. Int. J. Hydrogen Energy 37, 6491–6502 (2012)CrossRef
38.
Zurück zum Zitat B. Ruggeri, A.C. Luongo Malave, M. Bernardi, D. Fino, Energy efficacy used to score organic refuse pretreatment processes for hydrogen anaerobic production. Waste Manage. 33, 2225–2233 (2013) B. Ruggeri, A.C. Luongo Malave, M. Bernardi, D. Fino, Energy efficacy used to score organic refuse pretreatment processes for hydrogen anaerobic production. Waste Manage. 33, 2225–2233 (2013)
39.
Zurück zum Zitat I. Del Campo, I. Alegría, M. Zazpe, M. Echeverría, I. Echeverría, Diluted acid hydrolysis pretreatment of agri-food wastes for bioethanol production. Ind. Crops Prod. 24(3), 214–221 (2005)CrossRef I. Del Campo, I. Alegría, M. Zazpe, M. Echeverría, I. Echeverría, Diluted acid hydrolysis pretreatment of agri-food wastes for bioethanol production. Ind. Crops Prod. 24(3), 214–221 (2005)CrossRef
Metadaten
Titel
Hydrogen Production from Biowaste
verfasst von
Bernardo Ruggeri
Tonia Tommasi
Sara Sanfilippo
Copyright-Jahr
2015
Verlag
Springer London
DOI
https://doi.org/10.1007/978-1-4471-6431-9_6