Skip to main content

2016 | Buch

Hydrogen Transfer Reactions

Reductions and Beyond

insite
SUCHEN

Über dieses Buch

The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience.
Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.

Inhaltsverzeichnis

Frontmatter
Metal-Catalysed Transfer Hydrogenation of Ketones
Abstract
We highlight recent developments of catalytic transfer hydrogenation of ketones promoted by transition metals, while placing it within its historical context. Since optically active secondary alcohols are important building blocks in fine chemicals synthesis, the focus of this review is devoted to chiral catalyst types which are capable of inducing high stereoselectivities. Ruthenium complexes still represent the largest part of the catalysts, but other metals (e.g. Fe) are rapidly penetrating this field. While homogeneous transfer hydrogenation catalysts in some cases approach enzymatic performance, the interest in heterogeneous catalysts is constantly growing because of their reusability. Despite excellent activity, selectivity and compatibility of metal complexes with a variety of functional groups, no universal catalysts exist. Development of future catalyst systems is directed towards reaching as high as possible activity with low catalyst loadings, using “greener” conditions, and being able to operate under mild conditions and in a highly selective manner for a broad range of substrates.
Bogdan Štefane, Franc Požgan
Imino Transfer Hydrogenation Reductions
Abstract
This review contains a summary of recent developments in the transfer hydrogenation of C=N bonds, with a particularly focus on reports from within the last 10 years and asymmetric transformations. However, earlier work in the area is also discussed in order to provide context for the more recent results described. I focus strongly on the Ru/TsDPEN class of asymmetric transfer hydrogenation reactions originally reported by Noyori et al., together with examples of their applications, particularly to medically valuable target molecules. The recent developments in the area of highly active imine-reduction catalysts, notably those based on iridium, are also described in some detail. I discuss diastereoselective reduction methods as a route to the synthesis of chiral amines using transfer hydrogenation. The recent development of a methodology for positioning reduction complexes within chiral proteins, permitting the generation of asymmetric reduction products through a directed modification of the protein environment in a controlled manner, is also discussed.
Martin Wills
Organocatalytic Transfer Hydrogenation and Hydrosilylation Reactions
Abstract
The reduction of different carbon–carbon or carbon–heteroatom double bonds is a powerful tool that generates in many cases new stereogenic centers. In the last decade, the organocatalytic version of these transformations has attracted more attention, and remarkable progress has been made in this way. Organocatalysts such as chiral Brønsted acids, thioureas, chiral secondary amines or Lewis bases have been successfully used for this purpose. In this context, this chapter will cover pioneering and seminal examples using Hantzsch dihydropyridines 1 and trichlorosilane 2 as reducing agents. More recent examples will be also cited in order to cover as much as possible the complete research in this field.
Raquel P. Herrera
Proton-Coupled Electron Transfer in Organic Synthesis: Fundamentals, Applications, and Opportunities
Abstract
Proton-coupled electron transfers (PCETs) are unconventional redox processes in which both protons and electrons are exchanged, often in a concerted elementary step. While PCET is now recognized to play a central a role in biological redox catalysis and inorganic energy conversion technologies, its applications in organic synthesis are only beginning to be explored. In this chapter, we aim to highlight the origins, development, and evolution of the PCETprocessesmost relevant to applications in organic synthesis.Particularemphasis is given to the ability ofPCETto serve as a nonclassical mechanism for homolytic bond activation that is complimentary to more traditional hydrogen atom transfer processes, enabling the direct generation of valuable organic radical intermediates directly from their native functional group precursors under comparatively mild catalytic conditions. The synthetically advantageous features of PCET reactivity are described in detail, along with examples from the literature describing the PCET activation of common organic functional groups.
David C. Miller, Kyle T. Tarantino, Robert R. Knowles
Hydrogen-Atom Transfer Reactions
Abstract
The cascade [1,n]-hydrogen transfer/cyclization, recognized as the tertamino effect one century ago, has received considerable interest in recent decades, and great achievements have been made. With the aid of this strategy, the inert C(sp3)–H bonds can be directly functionalized into C–C, C–N, C–O bonds under catalysis of Lewis acids, Brønsted acids, as well as organocatalysts, and even merely under thermal conditions. Hydrogen can be transferred intramolecularly from hydrogen donor to acceptor in the form of hydride, or proton, followed by cyclization to furnish the cyclic products in processes featuring high atom economy. Methylene/methine adjacent to heteroatoms, e.g., nitrogen, oxygen, sulfur, can be exploited as hydride donor as well as methylene/methine without heteroatom assistance. Miscellaneous electrophilic subunits or intermediates, e.g., alkylidene malonate, carbophilic metal activated alkyne or allene, α,β-unsaturated aldehydes/ ketone, saturated aldehydes/iminium, ketenimine/carbodiimide, metal carbenoid, electron-withdrawing groups activated allene/alkyne, in situ generated carbocation, can serve as hydride acceptors. This methodology has shown preeminent power to construct 5-, 6-, or 7-membered heterocyclic as well as carbon rings. In this chapter, various hydrogen donors and acceptors are adequately discussed.
Liang Wang, Jian Xiao
C-Alkylation by Hydrogen Autotransfer Reactions
Abstract
The development of practical, efficient, and atom-economical methods for the formation of carbon–carbon bonds remains a topic of considerable interest in current synthetic organic chemistry. In this review, we have summarized selected topics from the recent literature with particular emphasis on C-alkylation processes involving hydrogen transfer using alcohols as alkylation reagents. This review includes selected highlights concerning recent progress towards the modification of catalytic systems for the α-alkylation of ketones, nitriles, and esters. Furthermore, we have devoted a significant portion of this review to the methylation of ketones, alcohols, and indoles using methanol. Lastly, we have also documented recent advances in β-alkylation methods involving the dimerization of alcohols (Guerbet reaction), as well as new developments in C-alkylation methods based on sp 3 C–H activation.
Yasushi Obora
N-Alkylation by Hydrogen Autotransfer Reactions
Abstract
Owing to the importance of amine/amide derivatives in all fields of chemistry, and also the green and environmentally benign features of using alcohols as alkylating reagents, the relatively high atom economic dehydrative N-alkylation reactions of amines/amides with alcohols through hydrogen autotransfer processes have received much attention and have developed rapidly in recent decades. Various efficient homogeneous and heterogeneous transition metal catalysts, nano materials, electrochemical methods, biomimetic methods, asymmetric N-alkylation reactions, aerobic oxidative methods, and even certain transition metal-free, catalyst-free, or autocatalyzed methods, have also been developed in recent years. With a brief introduction to the background and developments in this area of research, this chapter focuses mainly on recent progress and technical and conceptual advances contributing to the development of this research in the last decade. In addition to mainstream research on homogeneous and heterogeneous transition metal-catalyzed reactions, possible mechanistic routes for hydrogen transfer and alcohol activation, which are key processes in N-alkylation reactions but seldom discussed in the past, the recent reports on computational mechanistic studies of the N-alkylation reactions, and the newly emerged N-alkylation methods based on novel alcohol activation protocols such as air-promoted reactions and transition metal-free methods, are also reviewed in this chapter. Problems and bottlenecks that remained to be solved in the field, and promising new research that deserves greater future attention and effort, are also reviewed and discussed.
Xiantao Ma, Chenliang Su, Qing Xu
Ruthenium-Catalyzed Transfer Hydrogenation for C–C Bond Formation: Hydrohydroxyalkylation and Hydroaminoalkylation via Reactant Redox Pairs
Abstract
Merging the chemistry of transfer hydrogenation and carbonyl or imine addition, a broad new family of redox-neutral or reductive hydrohydroxyalkylations and hydroaminomethylations have been developed. In these processes, hydrogen redistribution between alcohols and π-unsaturated reactants is accompanied by C–C bond formation, enabling direct conversion of lower alcohols to higher alcohols. Similarly, hydrogen redistribution between amines to π-unsaturated reactants results in direct conversion of lower amines to higher amines. Alternatively, equivalent products of hydrohydroxyalkylation and hydroaminomethylation may be generated through the reaction of carbonyl compounds or imines with p-unsaturated reactants under the conditions of 2-propanol-mediated reductive coupling. Finally, using vicinally dioxygenated reactants, that is, diol, ketols, or diones, successive transfer hydrogenative coupling occurs to generate 2 C-C bonds, resulting in products of formal [4+2] cycloaddition.
Felix Perez, Susumu Oda, Laina M. Geary, Michael J. Krische
Metadaten
Titel
Hydrogen Transfer Reactions
herausgegeben von
Gabriela Guillena
Diego J. Ramón
Copyright-Jahr
2016
Electronic ISBN
978-3-319-43051-5
Print ISBN
978-3-319-43049-2
DOI
https://doi.org/10.1007/978-3-319-43051-5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.