Skip to main content
Erschienen in: Hydrogeology Journal 6/2018

27.02.2018 | Report

Hydrogeologic and hydraulic characterization of aquifer and nonaquifer layers in a lateritic terrain (West Bengal, India)

verfasst von: Sabinaya Biswal, Madan K. Jha, Shashi P. Sharma

Erschienen in: Hydrogeology Journal | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The hydrogeologic and hydraulic characteristics of a lateritic terrain in West Bengal, India, were investigated. Test drilling was conducted at ten sites and grain-size distribution curves (GSDCs) were prepared for 275 geologic samples. Performance evaluation of eight grain-size-analysis (GSA) methods was carried out to estimate the hydraulic conductivity (K) of subsurface formations. Finally, the GSA results were validated against pumping-test data. The GSDCs indicated that shallow aquifer layers are coarser than the deeper aquifer layers (uniformity coefficient 0.19–11.4). Stratigraphy analysis revealed that both shallow and deep aquifers of varying thickness exist at depths 9–40 and 40–79 m, respectively. The mean K estimates by the GSA methods are 3.62–292.86 m/day for shallow aquifer layers and 0.97–209.93 m/day for the deeper aquifer layers, suggesting significant aquifer heterogeneity. Pumping-test data indicated that the deeper aquifers are leaky confined with transmissivity 122.69–693.79 m2/day, storage coefficient 1.01 × 10−7–2.13 × 10−4 and leakance 2.01 × 10−7–34.56 × 10−2 day−1. Although the K values yielded by the GSA methods are generally larger than those obtained from the pumping tests, the Slichter, Harleman and US Bureau Reclamation (USBR) GSA methods yielded reasonable values at most of the sites (1–3 times higher than K estimates by the pumping-test method). In conclusion, more reliable aquifers exist at deeper depths that can be tapped for dependable water supply. GSA methods such as Slichter, Harleman and USBR can be used for the preliminary assessment of K in lateritic terrains in the absence of reliable field methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alyamani MS, Şen Z (1993) Determination of hydraulic conductivity from complete grain-size distribution curves. Groundwater 31(4):551–555CrossRef Alyamani MS, Şen Z (1993) Determination of hydraulic conductivity from complete grain-size distribution curves. Groundwater 31(4):551–555CrossRef
Zurück zum Zitat Arnold TL, Friedel MJ, Warner KL (2001) Hydrogeologic inventory of the upper Illinois River basin creating a large data base from well construction records. Geol Models Groundwater Flow Model. Illinois State Geol Surv Open File Ser 2001:1–5 Arnold TL, Friedel MJ, Warner KL (2001) Hydrogeologic inventory of the upper Illinois River basin creating a large data base from well construction records. Geol Models Groundwater Flow Model. Illinois State Geol Surv Open File Ser 2001:1–5
Zurück zum Zitat Barr DW (2001) Coefficient of permeability by measurable parameters. Groundwater 39(3):356–361CrossRef Barr DW (2001) Coefficient of permeability by measurable parameters. Groundwater 39(3):356–361CrossRef
Zurück zum Zitat Beyer W (1964) On the determination of hydraulic conductivity of gravels and sands from grain-size distributions. Wasserwirtschaft-Wassertechnik 14(6):165–169 Beyer W (1964) On the determination of hydraulic conductivity of gravels and sands from grain-size distributions. Wasserwirtschaft-Wassertechnik 14(6):165–169
Zurück zum Zitat Bouwer H (1978) Groundwater hydrology. McGraw-Hil, New York Bouwer H (1978) Groundwater hydrology. McGraw-Hil, New York
Zurück zum Zitat Carrier WD (2003) Goodbye, Hazen; hello, Kozeny-Carman. J Geotech Geoenviron 129(11):1054–1056CrossRef Carrier WD (2003) Goodbye, Hazen; hello, Kozeny-Carman. J Geotech Geoenviron 129(11):1054–1056CrossRef
Zurück zum Zitat CGWB (2013) Groundwater year book. Central Ground Water Board, New Delhi, India; Ministry of Water Resources, Faridabad, India, 91 pp CGWB (2013) Groundwater year book. Central Ground Water Board, New Delhi, India; Ministry of Water Resources, Faridabad, India, 91 pp
Zurück zum Zitat Chapuis RP (2004) Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio. Can Geotech J 41(5):787–795CrossRef Chapuis RP (2004) Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio. Can Geotech J 41(5):787–795CrossRef
Zurück zum Zitat Cheng C, Chen XH (2007) Evaluation of methods for determination of hydraulic properties in an aquifer–aquitard system hydrologically connected to a river. Hydrogeol J 15(4):669–678CrossRef Cheng C, Chen XH (2007) Evaluation of methods for determination of hydraulic properties in an aquifer–aquitard system hydrologically connected to a river. Hydrogeol J 15(4):669–678CrossRef
Zurück zum Zitat Cheong J-Y, Hamm S-Y, Kim H-S, Ko E-J, Yang K, Lee J-H (2008) Estimating hydraulic conductivity using grain-size analyses, aquifer test, and numerical modeling in a riverside alluvial system in South Korea. Hydrogeol J 16(6):1129–1143CrossRef Cheong J-Y, Hamm S-Y, Kim H-S, Ko E-J, Yang K, Lee J-H (2008) Estimating hydraulic conductivity using grain-size analyses, aquifer test, and numerical modeling in a riverside alluvial system in South Korea. Hydrogeol J 16(6):1129–1143CrossRef
Zurück zum Zitat Cronican AE, Gribb MM (2004) Hydraulic conductivity prediction for sandy soils. Groundwater 42(3):459–464CrossRef Cronican AE, Gribb MM (2004) Hydraulic conductivity prediction for sandy soils. Groundwater 42(3):459–464CrossRef
Zurück zum Zitat Devlin JF (2015) HydrogeosieveXL: an excel-based tool to estimate hydraulic from grain-size analysis. Hydrogeol J 23:837–844CrossRef Devlin JF (2015) HydrogeosieveXL: an excel-based tool to estimate hydraulic from grain-size analysis. Hydrogeol J 23:837–844CrossRef
Zurück zum Zitat Elwaseif M, Ismail A, Abdalla M, Abdel-Rahman M, Hafez MA (2012) Geophysical and hydrological investigations at the West Bank of Nile River (Luxor, Egypt). Environ Earth Sci 67(3):911–921CrossRef Elwaseif M, Ismail A, Abdalla M, Abdel-Rahman M, Hafez MA (2012) Geophysical and hydrological investigations at the West Bank of Nile River (Luxor, Egypt). Environ Earth Sci 67(3):911–921CrossRef
Zurück zum Zitat Fetter CW (2000) Applied hydrogeology, 4th edn. Prentice Hall, Upper Saddle River, NJ Fetter CW (2000) Applied hydrogeology, 4th edn. Prentice Hall, Upper Saddle River, NJ
Zurück zum Zitat Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hal, Upper Saddle River, NJ Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hal, Upper Saddle River, NJ
Zurück zum Zitat Garg KK, Jha MK, Kar S (2005) Field investigation of water movement and nitrate transport under perched water table conditions. Biosyst Eng 92(1):69–84CrossRef Garg KK, Jha MK, Kar S (2005) Field investigation of water movement and nitrate transport under perched water table conditions. Biosyst Eng 92(1):69–84CrossRef
Zurück zum Zitat Garg SK (2011) Irrigation engineering and hydraulic structures. Khanna, New Delhi Garg SK (2011) Irrigation engineering and hydraulic structures. Khanna, New Delhi
Zurück zum Zitat Hantush MS, Jacob CE (1955) Non-steady radial flow in an infinite leaky aquifer. Trans Am Geophys Union 36(1):95–100CrossRef Hantush MS, Jacob CE (1955) Non-steady radial flow in an infinite leaky aquifer. Trans Am Geophys Union 36(1):95–100CrossRef
Zurück zum Zitat Harleman DRF, Mehlhorn PF, Rumer RR (1963) Dispersion-permeability correlation in porous media. J Hydraul Div 89(2):67–85 Harleman DRF, Mehlhorn PF, Rumer RR (1963) Dispersion-permeability correlation in porous media. J Hydraul Div 89(2):67–85
Zurück zum Zitat Hazen A (1892) Some physical properties of sands and gravels with special reference to their use in filtration. 24th annual report, Massachusetts State Board of Health, Boston, pp 539–556 Hazen A (1892) Some physical properties of sands and gravels with special reference to their use in filtration. 24th annual report, Massachusetts State Board of Health, Boston, pp 539–556
Zurück zum Zitat Hwang SI, Powers SE (2003) Using particle-size distribution models to estimate soil hydraulic properties. Soil Sci Soc Am J 67(4):1103–1112CrossRef Hwang SI, Powers SE (2003) Using particle-size distribution models to estimate soil hydraulic properties. Soil Sci Soc Am J 67(4):1103–1112CrossRef
Zurück zum Zitat Ishaku JM, Gadzama EW, Kaigama U (2011) Evaluation of empirical formulae for the determination of hydraulic conductivity based on grain-size analysis. J Geol Mining Res 3(4):105–113 Ishaku JM, Gadzama EW, Kaigama U (2011) Evaluation of empirical formulae for the determination of hydraulic conductivity based on grain-size analysis. J Geol Mining Res 3(4):105–113
Zurück zum Zitat Jha MK, Singh A (2014) Application of genetic algorithm technique to inverse modeling of tide–aquifer interaction. Environ Earth Sci 71(8):3655–3672CrossRef Jha MK, Singh A (2014) Application of genetic algorithm technique to inverse modeling of tide–aquifer interaction. Environ Earth Sci 71(8):3655–3672CrossRef
Zurück zum Zitat Jha MK, Jayalekshmi K, Machiwal D, Kamii Y, Chikamori K (2004) Determination of hydraulic parameters of an unconfined alluvial aquifer by the floodwave-response technique. Hydrogeol J 12(6):628–642CrossRef Jha MK, Jayalekshmi K, Machiwal D, Kamii Y, Chikamori K (2004) Determination of hydraulic parameters of an unconfined alluvial aquifer by the floodwave-response technique. Hydrogeol J 12(6):628–642CrossRef
Zurück zum Zitat Jha MK, Namgial D, Kamii Y, Peiffer S (2008) Hydraulic parameters of coastal aquifer systems by direct methods and an extended tide–aquifer interaction technique. Water Resour Manag 22(12):1899–1923CrossRef Jha MK, Namgial D, Kamii Y, Peiffer S (2008) Hydraulic parameters of coastal aquifer systems by direct methods and an extended tide–aquifer interaction technique. Water Resour Manag 22(12):1899–1923CrossRef
Zurück zum Zitat Li P, Qian H, Wu J (2014) Comparison of three methods of hydrogeological parameter estimation in leaky aquifers using transient flow pumping tests. Hydrol Process 28(4):2293–2301CrossRef Li P, Qian H, Wu J (2014) Comparison of three methods of hydrogeological parameter estimation in leaky aquifers using transient flow pumping tests. Hydrol Process 28(4):2293–2301CrossRef
Zurück zum Zitat Li P, Qian H (2013) Global curve-fitting for determining the hydrogeological parameters of leaky confined aquifers by transient flow pumping test. Arab J Geosci 6(8):2745–2753CrossRef Li P, Qian H (2013) Global curve-fitting for determining the hydrogeological parameters of leaky confined aquifers by transient flow pumping test. Arab J Geosci 6(8):2745–2753CrossRef
Zurück zum Zitat London MK, Rus DL, Harvey FE (2001) Comparison of instream methods for measuring hydraulic conductivity in sandy stream beds. Groundwater 39(6):870–885CrossRef London MK, Rus DL, Harvey FE (2001) Comparison of instream methods for measuring hydraulic conductivity in sandy stream beds. Groundwater 39(6):870–885CrossRef
Zurück zum Zitat Lu C, Chen X, Cheng C, Ou G, Shu L (2012) Horizontal hydraulic conductivity of shallow streambed sediments and comparison with the grain-size analysis results. Hydrol Process 26(3):454–466CrossRef Lu C, Chen X, Cheng C, Ou G, Shu L (2012) Horizontal hydraulic conductivity of shallow streambed sediments and comparison with the grain-size analysis results. Hydrol Process 26(3):454–466CrossRef
Zurück zum Zitat Machiwal D, Jha MK (2016) Exploring hydrology and groundwater dynamics in lateritic terrain of West Bengal, India, under data limited conditions. Environ Earth Sci 75(9):1–19CrossRef Machiwal D, Jha MK (2016) Exploring hydrology and groundwater dynamics in lateritic terrain of West Bengal, India, under data limited conditions. Environ Earth Sci 75(9):1–19CrossRef
Zurück zum Zitat Machiwal D, Singh PK, Yadav KK (2017) Estimating aquifer properties and distributed groundwater recharge in a hard-rock catchment of Udaipur, India. Appl Water Sci 7(6):3157–3172CrossRef Machiwal D, Singh PK, Yadav KK (2017) Estimating aquifer properties and distributed groundwater recharge in a hard-rock catchment of Udaipur, India. Appl Water Sci 7(6):3157–3172CrossRef
Zurück zum Zitat Maclear LGA (2001) The hydrogeology of the Uitenhage Artesian Basin with reference to the Table Mountain Group Aquifer. Water SA 27(4):499–506CrossRef Maclear LGA (2001) The hydrogeology of the Uitenhage Artesian Basin with reference to the Table Mountain Group Aquifer. Water SA 27(4):499–506CrossRef
Zurück zum Zitat Odong J (2007) Evaluation of empirical formulae for determination of hydraulic conductivity based on grain-size analysis. J Am Sci 3(3):54–60 Odong J (2007) Evaluation of empirical formulae for determination of hydraulic conductivity based on grain-size analysis. J Am Sci 3(3):54–60
Zurück zum Zitat Pliakas F, Petalas C (2011) Determination of hydraulic conductivity of unconsolidated river alluvium from permeameter tests, empirical formulas and statistical parameters effect analysis. Water Resour Manag 25(11):2877–2899CrossRef Pliakas F, Petalas C (2011) Determination of hydraulic conductivity of unconsolidated river alluvium from permeameter tests, empirical formulas and statistical parameters effect analysis. Water Resour Manag 25(11):2877–2899CrossRef
Zurück zum Zitat Raghunath HM (2007) Ground water. New Age, New Delhi Raghunath HM (2007) Ground water. New Age, New Delhi
Zurück zum Zitat Reynolds RJ (1987) Diffusivity of a glacial outwash aquifer by the floodwave-response technique. Ground Water 25(3):290–299CrossRef Reynolds RJ (1987) Diffusivity of a glacial outwash aquifer by the floodwave-response technique. Ground Water 25(3):290–299CrossRef
Zurück zum Zitat Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460(7258):999–1002CrossRef Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460(7258):999–1002CrossRef
Zurück zum Zitat Rosas J, Lopez O, Missimer TM, Coulibaly KM, Dehwah AHA, Sesler K, Lujan LR, Mantilla D (2014) Determination of hydraulic conductivity from grain-size distribution for different depositional environments. Groundwater 52(3):399–413CrossRef Rosas J, Lopez O, Missimer TM, Coulibaly KM, Dehwah AHA, Sesler K, Lujan LR, Mantilla D (2014) Determination of hydraulic conductivity from grain-size distribution for different depositional environments. Groundwater 52(3):399–413CrossRef
Zurück zum Zitat Rosas J, Jadoon KZ, Missimer TM (2015) New empirical relationship between grain-size distribution and hydraulic conductivity for ephemeral streambed sediments. Environ Earth Sci 73(3):1303–1315CrossRef Rosas J, Jadoon KZ, Missimer TM (2015) New empirical relationship between grain-size distribution and hydraulic conductivity for ephemeral streambed sediments. Environ Earth Sci 73(3):1303–1315CrossRef
Zurück zum Zitat Roscoe Moss Co. (1990) Handbook of ground water development. Wiley, New YorkCrossRef Roscoe Moss Co. (1990) Handbook of ground water development. Wiley, New YorkCrossRef
Zurück zum Zitat Samuel MP, Jha MK (2003) Estimation of aquifer parameters from pumping test data by genetic algorithm optimization technique. J Irrigation Drain Eng ASCE 129(5):348–359CrossRef Samuel MP, Jha MK (2003) Estimation of aquifer parameters from pumping test data by genetic algorithm optimization technique. J Irrigation Drain Eng ASCE 129(5):348–359CrossRef
Zurück zum Zitat Schwartz FW, Zhang H (2003) Fundamentals of ground water. JWiley, New York Schwartz FW, Zhang H (2003) Fundamentals of ground water. JWiley, New York
Zurück zum Zitat Slichter CS (1898) A theoretical investigation of the motion of ground waters. 19th. Annual report, US Geological Survey, Reston, VA, pp 295–384 Slichter CS (1898) A theoretical investigation of the motion of ground waters. 19th. Annual report, US Geological Survey, Reston, VA, pp 295–384
Zurück zum Zitat Song J, Chen X, Wang D, Lackey S, Xu Z (2009) Feasibility of grain-size analysis methods for determination of vertical hydraulic conductivity of streambeds. J Hydrol 375(3):428–437CrossRef Song J, Chen X, Wang D, Lackey S, Xu Z (2009) Feasibility of grain-size analysis methods for determination of vertical hydraulic conductivity of streambeds. J Hydrol 375(3):428–437CrossRef
Zurück zum Zitat Soupios PM, Kalisperi D, Kanta A, Kouli M, Barsukov P, Vallianatos F (2010) Coastal aquifer assessment based on geological and geophysical survey, northwestern Crete, Greece. Environ Earth Sci 61(1):63–77CrossRef Soupios PM, Kalisperi D, Kanta A, Kouli M, Barsukov P, Vallianatos F (2010) Coastal aquifer assessment based on geological and geophysical survey, northwestern Crete, Greece. Environ Earth Sci 61(1):63–77CrossRef
Zurück zum Zitat Todd DK (1980) Groundwater hydrology. Wiley, New York Todd DK (1980) Groundwater hydrology. Wiley, New York
Zurück zum Zitat Vienken T, Dietrich P (2011) Field evaluation of methods for determining hydraulic conductivity from grain size data. J Hydrol 400(1):58–71CrossRef Vienken T, Dietrich P (2011) Field evaluation of methods for determining hydraulic conductivity from grain size data. J Hydrol 400(1):58–71CrossRef
Zurück zum Zitat Vukovic M, Soro A (1992) Determination of hydraulic conductivity of porous medium from grain-size composition. Water Resources Publications, Littleton, CO Vukovic M, Soro A (1992) Determination of hydraulic conductivity of porous medium from grain-size composition. Water Resources Publications, Littleton, CO
Zurück zum Zitat WHI (2002) AquiferTest V 3.5 User’s Manual 2002. Waterloo Hydrogeologic, Waterloo, ON WHI (2002) AquiferTest V 3.5 User’s Manual 2002. Waterloo Hydrogeologic, Waterloo, ON
Zurück zum Zitat World Bank Group (ed) (2012) World development indicators 2012. World Bank, Washington, DC World Bank Group (ed) (2012) World development indicators 2012. World Bank, Washington, DC
Zurück zum Zitat WWAP (2015) The United Nations world water development report 2015: water for a sustainable world. United Nations World Water Assessment Programme (WWAP), Paris, 139 pp WWAP (2015) The United Nations world water development report 2015: water for a sustainable world. United Nations World Water Assessment Programme (WWAP), Paris, 139 pp
Metadaten
Titel
Hydrogeologic and hydraulic characterization of aquifer and nonaquifer layers in a lateritic terrain (West Bengal, India)
verfasst von
Sabinaya Biswal
Madan K. Jha
Shashi P. Sharma
Publikationsdatum
27.02.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Hydrogeology Journal / Ausgabe 6/2018
Print ISSN: 1431-2174
Elektronische ISSN: 1435-0157
DOI
https://doi.org/10.1007/s10040-018-1722-5

Weitere Artikel der Ausgabe 6/2018

Hydrogeology Journal 6/2018 Zur Ausgabe