Skip to main content
Erschienen in: Water Resources Management 4/2015

01.03.2015

Hydrological Impacts of Climate Change Simulated by HIMS Models in the Luanhe River Basin, North China

verfasst von: Yan Jiang, Changming Liu, Xuyong Li

Erschienen in: Water Resources Management | Ausgabe 4/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper applied a HIMS (hydroinformatic modeling system) model to simulate streamflow in the Luanhe River Basin. This model was compared with SIMHYD and XAJ models for eight sub-basins of the Luanhe River. The results showed HIMS model performed better than SIMHYD and XAJ models, in these areas. We then investigated the streamflow response to climate changes in the different sub-basins. Twenty hypothetical climate change scenarios (perturbed temperatures and precipitation) were used to test the sensitivity of HIMS model simulated annual and mean monthly streamflow. Our results demonstrated that: (i) the annual streamflow was positively related to precipitation, and there was a negative relationship between streamflow and temperature for all the eight sub-basins; (ii) in all sub-basins, the relationship of annual streamflow change to precipitation change was highly non-linear, but the relationship of annual streamflow change with temperature change was approximately linear; (iii) the annual streamflow response to precipitation change was more sensitive when increasing than decreasing; (iv) the annual streamflow response to climate change was more sensitive in the Xingzhouhe River sub-basin, followed by the Wuliehe River sub-basin, and the Sahe River sub-basin was least sensitive; (iv) there were few differences in inner-streamflow response to climate change in the Laoniuhe, Yimatuhe, and Yixunhe Rivers. But for other rivers, when the temperature changed, larger streamflow differences happened in winter and summer; when the precipitation decreased or was unchanged, the larger differences happened in winter months, and when the precipitation increased, larger differences happened in winter and summer.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdulla F, Eshtawi T, Assaf H (2009) Assessment of the impact of potential climate change on the water balance of a semi-arid watershed. Water Resour Manag 23(10):2051–2068CrossRef Abdulla F, Eshtawi T, Assaf H (2009) Assessment of the impact of potential climate change on the water balance of a semi-arid watershed. Water Resour Manag 23(10):2051–2068CrossRef
Zurück zum Zitat Arora VK (2001) Streamflow simulations for continental-scale river basins in a global atmospheric general circulation model. Adv Water Resour 24:775–791CrossRef Arora VK (2001) Streamflow simulations for continental-scale river basins in a global atmospheric general circulation model. Adv Water Resour 24:775–791CrossRef
Zurück zum Zitat Bao H, Zhao L, He Y, Li Z, Wetterhall F, Cloke H, Pappenberger F, Manful D (2011) Coupling ensemble weather predictions based on TIGGE database with Grid-Xinanjiang model for flood forecast. Adv Geosci 29:61–67CrossRef Bao H, Zhao L, He Y, Li Z, Wetterhall F, Cloke H, Pappenberger F, Manful D (2011) Coupling ensemble weather predictions based on TIGGE database with Grid-Xinanjiang model for flood forecast. Adv Geosci 29:61–67CrossRef
Zurück zum Zitat Bao ZX, Zhang JY, Wang GQ, Fu GB, He RM, Yan XL, Jin JL, Liu YL, Zhang AJ (2012) Attribution for decreasing streamflow of the Haihe River basin, northern China: climate variability or human activities? J Hydrol 460–46:117–129CrossRef Bao ZX, Zhang JY, Wang GQ, Fu GB, He RM, Yan XL, Jin JL, Liu YL, Zhang AJ (2012) Attribution for decreasing streamflow of the Haihe River basin, northern China: climate variability or human activities? J Hydrol 460–46:117–129CrossRef
Zurück zum Zitat Bates B, Kundzewicz ZW, Wu S, Palutikof J (2008) Climate change and water. Intergovernmental Panel on Climate Change (IPCC) Bates B, Kundzewicz ZW, Wu S, Palutikof J (2008) Climate change and water. Intergovernmental Panel on Climate Change (IPCC)
Zurück zum Zitat Chau KW (2007) A split-step particle swarm optimization algorithm in river stage forecasting. J Hydrol 346:131–135CrossRef Chau KW (2007) A split-step particle swarm optimization algorithm in river stage forecasting. J Hydrol 346:131–135CrossRef
Zurück zum Zitat Chiew FHS (2006) Estimation of rainfall elasticity of streamflow in Australia. Hydrol Sci J 51:613–625CrossRef Chiew FHS (2006) Estimation of rainfall elasticity of streamflow in Australia. Hydrol Sci J 51:613–625CrossRef
Zurück zum Zitat Chiew FHS, Peel MC, Western AW, Singh VP, Frevert D (2002) Application and testing of the simple rainfall-runoff model SIMHYD. Mathematical models of small watershed hydrology and applications, 335–367 Chiew FHS, Peel MC, Western AW, Singh VP, Frevert D (2002) Application and testing of the simple rainfall-runoff model SIMHYD. Mathematical models of small watershed hydrology and applications, 335–367
Zurück zum Zitat Chu W, Gao X, Sorooshian S (2010) Improving the shuffled complex evolution scheme for optimization of complex nonlinear hydrological systems: application to the calibration of the Sacramento soil‐moisture accounting model. Water Resour Res 46(9):W09530. doi:10.1029/2010WR009224 CrossRef Chu W, Gao X, Sorooshian S (2010) Improving the shuffled complex evolution scheme for optimization of complex nonlinear hydrological systems: application to the calibration of the Sacramento soil‐moisture accounting model. Water Resour Res 46(9):W09530. doi:10.​1029/​2010WR009224 CrossRef
Zurück zum Zitat Dibike YB, Coulibaly P (2005) Hydrologic impact of climate change in the Saguenay watershed: comparison of downscaling methods and hydrologic models. J Hydrol 307:145–163CrossRef Dibike YB, Coulibaly P (2005) Hydrologic impact of climate change in the Saguenay watershed: comparison of downscaling methods and hydrologic models. J Hydrol 307:145–163CrossRef
Zurück zum Zitat Duan Q, Sorooshian S, Gupta V (1992) Effective and efficient global optimization for conceptual rainfall‐runoff models. Water Resour Res 28:1015–1031CrossRef Duan Q, Sorooshian S, Gupta V (1992) Effective and efficient global optimization for conceptual rainfall‐runoff models. Water Resour Res 28:1015–1031CrossRef
Zurück zum Zitat Duan Q, Sorooshian S, Gupta VK (1994) Optimal use of the SCE-UA global optimization method for calibrating watershed models. J Hydrol 158:265–284CrossRef Duan Q, Sorooshian S, Gupta VK (1994) Optimal use of the SCE-UA global optimization method for calibrating watershed models. J Hydrol 158:265–284CrossRef
Zurück zum Zitat Dumedah G, Berg AA, Wineberg M, Collier R (2010) Selecting model parameter sets from a trade-off surface generated from the non-dominated sorting genetic algorithm-II. Water Resour Manag 24:4469–4489CrossRef Dumedah G, Berg AA, Wineberg M, Collier R (2010) Selecting model parameter sets from a trade-off surface generated from the non-dominated sorting genetic algorithm-II. Water Resour Manag 24:4469–4489CrossRef
Zurück zum Zitat Franchini M, Lamberti P (1994) A flood routing Muskingum type simulation and forecasting model based on level data alone. Water Resour Res 30(7):2183–2196CrossRef Franchini M, Lamberti P (1994) A flood routing Muskingum type simulation and forecasting model based on level data alone. Water Resour Res 30(7):2183–2196CrossRef
Zurück zum Zitat Füssel H-M, Klein RJ (2006) Climate change vulnerability assessments: an evolution of conceptual thinking. Clim Chang 75:301–329CrossRef Füssel H-M, Klein RJ (2006) Climate change vulnerability assessments: an evolution of conceptual thinking. Clim Chang 75:301–329CrossRef
Zurück zum Zitat Gill MK, Kaheil YH, Khalil A, McKee M, Bastidas L (2006) Multiobjective particle swarm optimization for parameter estimation in hydrology. Water Resour Res 42:W07417. doi:10.1029/2005WR004528 CrossRef Gill MK, Kaheil YH, Khalil A, McKee M, Bastidas L (2006) Multiobjective particle swarm optimization for parameter estimation in hydrology. Water Resour Res 42:W07417. doi:10.​1029/​2005WR004528 CrossRef
Zurück zum Zitat Guo S, Wang J, Xiong L, Ying A, Li D (2002) A macro-scale and semi-distributed monthly water balance model to predict climate change impacts in China. J Hydrol 268:1–15CrossRef Guo S, Wang J, Xiong L, Ying A, Li D (2002) A macro-scale and semi-distributed monthly water balance model to predict climate change impacts in China. J Hydrol 268:1–15CrossRef
Zurück zum Zitat Guo J, Zhou JZ, Zou Q, Liu Y, Song LX (2013) A novel multi-objective shuffled complex differential evolution algorithm with application to hydrological model parameter optimization. Water Resour Manag 27(8):2923–2946CrossRef Guo J, Zhou JZ, Zou Q, Liu Y, Song LX (2013) A novel multi-objective shuffled complex differential evolution algorithm with application to hydrological model parameter optimization. Water Resour Manag 27(8):2923–2946CrossRef
Zurück zum Zitat IPCC (2001) Third assessment report-climate change 2001. IPCC/WMO/UNEP IPCC (2001) Third assessment report-climate change 2001. IPCC/WMO/UNEP
Zurück zum Zitat Jiang T, Chen YD, Xu C-Y, X. C, Chen X, Singh VP (2007) Comparison of hydrological impacts of climate change simulated by six hydrological models in the Dongjiang Basin, South China. J Hydrol 336:316–333CrossRef Jiang T, Chen YD, Xu C-Y, X. C, Chen X, Singh VP (2007) Comparison of hydrological impacts of climate change simulated by six hydrological models in the Dongjiang Basin, South China. J Hydrol 336:316–333CrossRef
Zurück zum Zitat Jiang Y, Liu C, Huang C, Wu X (2010) Improved particle swarm algorithm for hydrological parameter optimization. Appl Math Comput 217:3207–3215CrossRef Jiang Y, Liu C, Huang C, Wu X (2010) Improved particle swarm algorithm for hydrological parameter optimization. Appl Math Comput 217:3207–3215CrossRef
Zurück zum Zitat Jiang Y, Li X, Huang C (2013) Automatic calibration a hydrological model using a master–slave swarms shuffling evolution algorithm based on self-adaptive particle swarm optimization. Expert Syst Appl 40(2):752–757CrossRef Jiang Y, Li X, Huang C (2013) Automatic calibration a hydrological model using a master–slave swarms shuffling evolution algorithm based on self-adaptive particle swarm optimization. Expert Syst Appl 40(2):752–757CrossRef
Zurück zum Zitat Jiang SH, Ren LL, Hong Y, Yang XL, Ma MW, Yuan F (2014) Improvement of multi-satellite real-time precipitation products for ensemble streamflow simulation in a middle latitude basin in south China. Water Resour Manag 28(8):2259–2278CrossRef Jiang SH, Ren LL, Hong Y, Yang XL, Ma MW, Yuan F (2014) Improvement of multi-satellite real-time precipitation products for ensemble streamflow simulation in a middle latitude basin in south China. Water Resour Manag 28(8):2259–2278CrossRef
Zurück zum Zitat Joseph JF, Guillaume JHA (2013) Using a parallelized MCMC algorithm in R to identify appropriate likelihood functions for SWAT. Environ Model Softw 46:292–298CrossRef Joseph JF, Guillaume JHA (2013) Using a parallelized MCMC algorithm in R to identify appropriate likelihood functions for SWAT. Environ Model Softw 46:292–298CrossRef
Zurück zum Zitat Kaini P, Artita K, Nicklow JW (2012) Optimizing structural best management practices using SWAT and genetic algorithm to improve water quality goals. Water Resour Manag 26:1827–1845CrossRef Kaini P, Artita K, Nicklow JW (2012) Optimizing structural best management practices using SWAT and genetic algorithm to improve water quality goals. Water Resour Manag 26:1827–1845CrossRef
Zurück zum Zitat Li JZ, Feng P (2009) Trend ananlysis of runoff generation characteristics of Luanhe River Basin. J Arid Land Resour Environ 23(8):79–85 (in Chinese) Li JZ, Feng P (2009) Trend ananlysis of runoff generation characteristics of Luanhe River Basin. J Arid Land Resour Environ 23(8):79–85 (in Chinese)
Zurück zum Zitat Li H, Zhang Y, Chiew FHS, Xu S (2009) Predicting runoff in ungauged catchments by using Xinanjiang model with MODIS leaf area index. J Hydrol 370:155–162CrossRef Li H, Zhang Y, Chiew FHS, Xu S (2009) Predicting runoff in ungauged catchments by using Xinanjiang model with MODIS leaf area index. J Hydrol 370:155–162CrossRef
Zurück zum Zitat Liu CM, Wang GT (1980) The estimation of small-watershed peak flows in China. Water Resour Res 16(5):881–886CrossRef Liu CM, Wang GT (1980) The estimation of small-watershed peak flows in China. Water Resour Res 16(5):881–886CrossRef
Zurück zum Zitat Liu CM, Zheng HX, Wang ZG (2006) Distributed simulation of catchment water cycle. Yellow River Conservancy Press, Zhengzhou, China Liu CM, Zheng HX, Wang ZG (2006) Distributed simulation of catchment water cycle. Yellow River Conservancy Press, Zhengzhou, China
Zurück zum Zitat Liu C, Wang Z, Zheng H, Zhang L, Wu X (2008) Development of hydro-informatic modelling system and its application. Sci China Ser Technol Sci 51:456–466CrossRef Liu C, Wang Z, Zheng H, Zhang L, Wu X (2008) Development of hydro-informatic modelling system and its application. Sci China Ser Technol Sci 51:456–466CrossRef
Zurück zum Zitat Liu LL, Fischer T, Jiang T, Luo Y (2013) Comparison of uncertainties in projected flood frequency of the Zhujiang River, South China. Quatern Int 304:51–56 Liu LL, Fischer T, Jiang T, Luo Y (2013) Comparison of uncertainties in projected flood frequency of the Zhujiang River, South China. Quatern Int 304:51–56
Zurück zum Zitat Lu E, Takle ES, Manoj J (2010) The relationships between climatic and hydrological changes in the Upper Mississippi River Basin: A SWAT and multi-GCM study. J Hydrometeorol 11:437–451CrossRef Lu E, Takle ES, Manoj J (2010) The relationships between climatic and hydrological changes in the Upper Mississippi River Basin: A SWAT and multi-GCM study. J Hydrometeorol 11:437–451CrossRef
Zurück zum Zitat Mengistu D, Sorteberg A (2012) Sensitivity of SWAT simulated streamflow to climatic changes within the Eastern Nile River basin. Hydrol Earth Syst Sci 16:391–407CrossRef Mengistu D, Sorteberg A (2012) Sensitivity of SWAT simulated streamflow to climatic changes within the Eastern Nile River basin. Hydrol Earth Syst Sci 16:391–407CrossRef
Zurück zum Zitat Merritt WS, Alila Y, Barton M, Taylor B, Cohen S, Neilsen D (2006) Hydrologic response to scenarios of climate change in sub watersheds of the Okanagan basin, British Columbia. J Hydrol 326:79–108CrossRef Merritt WS, Alila Y, Barton M, Taylor B, Cohen S, Neilsen D (2006) Hydrologic response to scenarios of climate change in sub watersheds of the Okanagan basin, British Columbia. J Hydrol 326:79–108CrossRef
Zurück zum Zitat Miller NL, Bashford KE, Strem E (2003) Potential impacts of climate change on California hydrology. J Am Water Resour Assoc 39:771–784CrossRef Miller NL, Bashford KE, Strem E (2003) Potential impacts of climate change on California hydrology. J Am Water Resour Assoc 39:771–784CrossRef
Zurück zum Zitat Muzik I (2002) A first-order analysis of the climate change effect on flood frequencies in a subalpine watershed by means of a hydrological rainfall–runoff model. J Hydrol 267:65–73CrossRef Muzik I (2002) A first-order analysis of the climate change effect on flood frequencies in a subalpine watershed by means of a hydrological rainfall–runoff model. J Hydrol 267:65–73CrossRef
Zurück zum Zitat Peng D, Xu Z (2010) Simulating the Impact of climate change on streamflow in the Tarim River basin by using a modified semi‐distributed monthly water balance model. Hydrol Process 24:209–216 Peng D, Xu Z (2010) Simulating the Impact of climate change on streamflow in the Tarim River basin by using a modified semi‐distributed monthly water balance model. Hydrol Process 24:209–216
Zurück zum Zitat Samadi S, Carbone GJ, Mahdavi M, Sharifi F, Bihamta MR (2013) Statistical downscaling of river runoff in a semi arid catchment. Water Resour Manag 27(1):117–136CrossRef Samadi S, Carbone GJ, Mahdavi M, Sharifi F, Bihamta MR (2013) Statistical downscaling of river runoff in a semi arid catchment. Water Resour Manag 27(1):117–136CrossRef
Zurück zum Zitat Shi Y, Liu H, Fan M, Huang J (2013) Parameter identification of RVM Runoff forecasting model based on improved particle swarm optimization, advances in swarm intelligence. Springer, pp. 160–167 Shi Y, Liu H, Fan M, Huang J (2013) Parameter identification of RVM Runoff forecasting model based on improved particle swarm optimization, advances in swarm intelligence. Springer, pp. 160–167
Zurück zum Zitat Shin MJ, Guillaume JH, Croke BF, Jakeman AJ (2013) Addressing ten questions about conceptual rainfall–runoff models with global sensitivity analyses in R. J Hydrol 503:135–152CrossRef Shin MJ, Guillaume JH, Croke BF, Jakeman AJ (2013) Addressing ten questions about conceptual rainfall–runoff models with global sensitivity analyses in R. J Hydrol 503:135–152CrossRef
Zurück zum Zitat Singh P, Arora M, Goel NK (2006) Effect of climate change on runoff of a glacierized Himalayan basin. Hydrol Process 20:1979–1992CrossRef Singh P, Arora M, Goel NK (2006) Effect of climate change on runoff of a glacierized Himalayan basin. Hydrol Process 20:1979–1992CrossRef
Zurück zum Zitat Van Griensven A, Francos A, Bauwens W (2002) Sensitivity analysis and auto-calibration of an integral dynamic model for river water quality. Water Sci Technol 45:325–332 Van Griensven A, Francos A, Bauwens W (2002) Sensitivity analysis and auto-calibration of an integral dynamic model for river water quality. Water Sci Technol 45:325–332
Zurück zum Zitat Varis O, Kajander T, Lemmelä R (2004) Climate and water: from climate models to water resources management and vice versa. Clim Chang 66:321–344CrossRef Varis O, Kajander T, Lemmelä R (2004) Climate and water: from climate models to water resources management and vice versa. Clim Chang 66:321–344CrossRef
Zurück zum Zitat Vicuna S, Dracup J (2007) The evolution of climate change impact studies on hydrology and water resources in California. Clim Chang 82:327–350CrossRef Vicuna S, Dracup J (2007) The evolution of climate change impact studies on hydrology and water resources in California. Clim Chang 82:327–350CrossRef
Zurück zum Zitat Vrugt JA, Gupta HV, Bastidas LA, Bouten W, Sorooshian S (2003a) Effective and efficient algorithm for multiobjective optimization of hydrologic models. Water Resour Res 39:1214. doi:10.1029/2002WR001746 Vrugt JA, Gupta HV, Bastidas LA, Bouten W, Sorooshian S (2003a) Effective and efficient algorithm for multiobjective optimization of hydrologic models. Water Resour Res 39:1214. doi:10.​1029/​2002WR001746
Zurück zum Zitat Vrugt JA, Gupta HV, Bouten W, Sorooshian S (2003b) A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour Res 39:1201. doi:10.1029/2002WR001642 Vrugt JA, Gupta HV, Bouten W, Sorooshian S (2003b) A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour Res 39:1201. doi:10.​1029/​2002WR001642
Zurück zum Zitat Wang QJ (1991) The genetic algorithm and its application to calibrating conceptual rainfall‐runoff models. Water Resour Res 27:2467–2471CrossRef Wang QJ (1991) The genetic algorithm and its application to calibrating conceptual rainfall‐runoff models. Water Resour Res 27:2467–2471CrossRef
Zurück zum Zitat Wang QJ (1997) Using genetic algorithms to optimise model parameters. Environ Model Softw 12:27–34CrossRef Wang QJ (1997) Using genetic algorithms to optimise model parameters. Environ Model Softw 12:27–34CrossRef
Zurück zum Zitat White ED, Easton ZM, Fuka DR, Collick AS, Adgo E, McCartney M, Awulachew SB, Selassie YG, Steenhuis TS (2011) Development and application of a physically based landscape water balance in the SWAT model. Hydrol Process 25:915–925CrossRef White ED, Easton ZM, Fuka DR, Collick AS, Adgo E, McCartney M, Awulachew SB, Selassie YG, Steenhuis TS (2011) Development and application of a physically based landscape water balance in the SWAT model. Hydrol Process 25:915–925CrossRef
Zurück zum Zitat Wu Y, Liu S, Gallant AL (2012) Predicting impacts of increased CO2 and climate change on the water cycle and water quality in the semiarid James River Basin of the Midwestern USA. Sci Total Environ 430:150–160CrossRef Wu Y, Liu S, Gallant AL (2012) Predicting impacts of increased CO2 and climate change on the water cycle and water quality in the semiarid James River Basin of the Midwestern USA. Sci Total Environ 430:150–160CrossRef
Zurück zum Zitat Xie ZH, Su FG, Liang X, Zeng QC (2003) Applications of a surface runoff model with Horton and Dunne runoff for VIC. Adv Atomospheric Sci 20(2):165–172CrossRef Xie ZH, Su FG, Liang X, Zeng QC (2003) Applications of a surface runoff model with Horton and Dunne runoff for VIC. Adv Atomospheric Sci 20(2):165–172CrossRef
Zurück zum Zitat Xu C-Y (2000) Modelling the effects of climate change on water resources in central Sweden. Water Resour Manag 14:177–189CrossRef Xu C-Y (2000) Modelling the effects of climate change on water resources in central Sweden. Water Resour Manag 14:177–189CrossRef
Zurück zum Zitat Xu C-Y, Widén E, Halldin S (2005) Modelling hydrological consequences of climate change—progress and challenges. Adv Atmos Sci 22:789–797 Xu C-Y, Widén E, Halldin S (2005) Modelling hydrological consequences of climate change—progress and challenges. Adv Atmos Sci 22:789–797
Zurück zum Zitat Xu ZX, Zhao FF, Li JY (2009) Response of streamflow to climate change in the headwater catchment of the Yellow River basin. Quat Int 208:62–75CrossRef Xu ZX, Zhao FF, Li JY (2009) Response of streamflow to climate change in the headwater catchment of the Yellow River basin. Quat Int 208:62–75CrossRef
Zurück zum Zitat Yuan F, Xie ZH, Xia J (2005) Simulating hydrologic changes with climate change scenarios in the Haihe River Basin. Pedosphere 15:595–600 Yuan F, Xie ZH, Xia J (2005) Simulating hydrologic changes with climate change scenarios in the Haihe River Basin. Pedosphere 15:595–600
Zurück zum Zitat Zhan CS, Zeng SD, Jiang SS, Wang XH, Ye W (2014) An integrated approach for partitioning the effect of climate change and human activities on surface runoff. Water Resour Manag 28(11):3843–3858CrossRef Zhan CS, Zeng SD, Jiang SS, Wang XH, Ye W (2014) An integrated approach for partitioning the effect of climate change and human activities on surface runoff. Water Resour Manag 28(11):3843–3858CrossRef
Zurück zum Zitat Zhang Y, Chiew FHS (2009) Relative merits of different methods for runoff predictions in ungauged catchments. Water Resour Res 45, doi: 10.1029/2008WR007504 Zhang Y, Chiew FHS (2009) Relative merits of different methods for runoff predictions in ungauged catchments. Water Resour Res 45, doi: 10.​1029/​2008WR007504
Zurück zum Zitat Zhang X, Srinivasan R, Hao E (2007) Predicting hydrologic response to climate change in the Luohe River basin using the SWAT model. Trans ASABE 50:901–910CrossRef Zhang X, Srinivasan R, Hao E (2007) Predicting hydrologic response to climate change in the Luohe River basin using the SWAT model. Trans ASABE 50:901–910CrossRef
Zurück zum Zitat Zhang X, Srinivasan R, Zhao K, Liew MV (2009) Evaluation of global optimization algorithms for parameter calibration of a computationally intensive hydrologic model. Hydrol Process 23:430–441CrossRef Zhang X, Srinivasan R, Zhao K, Liew MV (2009) Evaluation of global optimization algorithms for parameter calibration of a computationally intensive hydrologic model. Hydrol Process 23:430–441CrossRef
Zurück zum Zitat Zhao R (1992) The Xinanjiang model applied in China. J Hydrol 135:371–381CrossRef Zhao R (1992) The Xinanjiang model applied in China. J Hydrol 135:371–381CrossRef
Zurück zum Zitat Zhao RJ, Liu XR, Singh VP (1995) The Xinanjiang model. Comput Models Watershed Hydrol, 215–232 Zhao RJ, Liu XR, Singh VP (1995) The Xinanjiang model. Comput Models Watershed Hydrol, 215–232
Zurück zum Zitat Zuo DP, Xu ZX, Wu W, Zhao J, Zhao FF (2014) Identification of streamflow response to climate change and human activities in the Wei River Basin, China. Water Resour Manag 28(3):833–8551CrossRef Zuo DP, Xu ZX, Wu W, Zhao J, Zhao FF (2014) Identification of streamflow response to climate change and human activities in the Wei River Basin, China. Water Resour Manag 28(3):833–8551CrossRef
Metadaten
Titel
Hydrological Impacts of Climate Change Simulated by HIMS Models in the Luanhe River Basin, North China
verfasst von
Yan Jiang
Changming Liu
Xuyong Li
Publikationsdatum
01.03.2015
Verlag
Springer Netherlands
Erschienen in
Water Resources Management / Ausgabe 4/2015
Print ISSN: 0920-4741
Elektronische ISSN: 1573-1650
DOI
https://doi.org/10.1007/s11269-014-0881-y

Weitere Artikel der Ausgabe 4/2015

Water Resources Management 4/2015 Zur Ausgabe