Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

07.06.2019 | Ausgabe 9/2019

Water Resources Management 9/2019

Hydrological Uncertainty Processor (HUP) with Estimation of the Marginal Distribution by a Gaussian Mixture Model

Zeitschrift:
Water Resources Management > Ausgabe 9/2019
Autoren:
Kuaile Feng, Jianzhong Zhou, Yi Liu, Chengwei Lu, Zhongzheng He
Wichtige Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Uncertainty assessments of hydrological prediction results can reflect additional hydrological information and reveal important hydrological characteristics of river basins, which is of great significance to disaster prevention and reduction. The hydrological uncertainty processor (HUP), which is a key part of the Bayesian forecasting system (BFS), has derived a variety of methods for hydrological uncertainty forecasting. The HUP allows for any form of marginal distributions of hydrological data and does not require a unified estimation structure for the marginal distribution function. The Gaussian mixture model (GMM) is a probability distribution estimation model that can approximate any probability distribution with arbitrary precision. In this paper, the GMM was used to estimate the marginal distribution of observed and modelled data, and this method is called HUP-GMM. The uncertainty of river discharge at the Yichang hydrological station on the main stem of the Yangtze River in China is predicted by the HUP-GMM. The Weibull and Gamma distributions, which are commonly used hydrological probability distributions, are compared to analyse the performance of the GMM. In June, when the measured flow h3 is 13,850 m3/s and the GMM, Gamma and Weibull distributions are used, the prior probabilities are 1.63E-04, 1.05E-04 and 9.50E-05 and the posterior probabilities are 2.57E-04, 1.61E-04 and 1.38E-04, respectively. In September, when the measured flow h3 is 35,400 m3/s and the GMM, Gamma and Weibull distributions are used, the prior probabilities are 5.98E-05, 2.21E-05 and 2.18E-05 and the posterior probabilities are 1.64E-04, 9.15E-05 and 8.43E-05, respectively. The results show that the performance of the uncertainty estimation of the prior and posterior probability distributions in the HUP-GMM has been improved.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 9/2019

Water Resources Management 9/2019 Zur Ausgabe