Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 2/2020

08.10.2019 | Research Article - Mechanical Engineering

Hydrostructural Optimization of a Marine Current Turbine Through Multi-fidelity Numerical Models

verfasst von: Karthikeyan Thandayutham, Abdus Samad

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A marine current turbine (MCT) that extracts energy from ocean currents should be hydrodynamically and structurally stable to generate uninterrupted power. This can be achieved through the shape optimization of MCT blades. In this work, a horizontal axis MCT of 0.8 m diameter was optimized through multi-fidelity numerical approach. The design parameters such as blade pitch angle (θ) and the number of rotor blades (NR) were modified to increase the power coefficient (CP) and to reduce the von-Mises stress (σv) using multi-objective optimization technique. A coupled fluid–structure interaction method is used for fluid and structural analysis of MCT. Also, an analysis for identifying the cavitation inception is incorporated. A surrogate-based optimization code was used to produce a Pareto optimal front. The MCT with CP = 0.451 encountered σv = 125.83 MPa and a high total deformation (TD) = 20.259 mm near the blade tip. The TD of the same MCT blade was later reduced to 1/3rd of its actual value by identifying an alternate turbine material. The losses due to vortices, wake generation, and cavitation study are discussed in the present work.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bryden, I.G.; Couch, S.J.: How much energy can be extracted from moving water with a free surface: a question of importance in the field of tidal current energy? Renew. Energy 32, 1961–1966 (2007) Bryden, I.G.; Couch, S.J.: How much energy can be extracted from moving water with a free surface: a question of importance in the field of tidal current energy? Renew. Energy 32, 1961–1966 (2007)
2.
Zurück zum Zitat ICF Marbek: Review of Selected Tidal Power Technologies. Final Report, Canada (2012) ICF Marbek: Review of Selected Tidal Power Technologies. Final Report, Canada (2012)
3.
Zurück zum Zitat Waters, S.; Aggidis, G.: Tidal range technologies and state of the art in review. Renew. Sustain. Energy Rev. 59, 514–529 (2016) Waters, S.; Aggidis, G.: Tidal range technologies and state of the art in review. Renew. Sustain. Energy Rev. 59, 514–529 (2016)
4.
Zurück zum Zitat Mayeed, M.S., Newaz, G.M., Hall, D., Elder, D.: Comparison of tidal current turbine designs in several high speed locations around the United States. In: Proceedings of the ASME International Mechanical Engineering Congress and Exposition, 13th–19th November, Houston, Texas (2015) Mayeed, M.S., Newaz, G.M., Hall, D., Elder, D.: Comparison of tidal current turbine designs in several high speed locations around the United States. In: Proceedings of the ASME International Mechanical Engineering Congress and Exposition, 13th–19th November, Houston, Texas (2015)
5.
Zurück zum Zitat Bahaj, A.S.; Myers, L.E.: Fundamentals applicable to the utilisation of marine current turbines for energy production. Renew. Energy 28, 2205–2211 (2003) Bahaj, A.S.; Myers, L.E.: Fundamentals applicable to the utilisation of marine current turbines for energy production. Renew. Energy 28, 2205–2211 (2003)
6.
Zurück zum Zitat Myers, L.; Bahaj, A.S.: Wake studies of a 1/30th scale horizontal axis marine current turbine. Ocean Eng. 34, 758–762 (2007) Myers, L.; Bahaj, A.S.: Wake studies of a 1/30th scale horizontal axis marine current turbine. Ocean Eng. 34, 758–762 (2007)
7.
Zurück zum Zitat Karthikeyan, T., Samad, A.: Design and optimization of a marine current turbine: effects of pitch angle and twist distribution. In: Advances in Renewable Energies Offshore—Proceedings of 3rd International Conference on Renew Energies Offshore, 8th–10th October, Lisbon, Portugal (2018) Karthikeyan, T., Samad, A.: Design and optimization of a marine current turbine: effects of pitch angle and twist distribution. In: Advances in Renewable Energies Offshore—Proceedings of 3rd International Conference on Renew Energies Offshore, 8th–10th October, Lisbon, Portugal (2018)
8.
Zurück zum Zitat Priegue, L., Stoesser, T., Runge, S.: Effect of blade parameters on the performance of a cross-flow turbine. In: E-Proceedings 36th IAHR World Congress, 28th June–3rd July, The Netherlands (2015) Priegue, L., Stoesser, T., Runge, S.: Effect of blade parameters on the performance of a cross-flow turbine. In: E-Proceedings 36th IAHR World Congress, 28th June–3rd July, The Netherlands (2015)
9.
Zurück zum Zitat Le, T.Q.; Lee, K.S.; Park, J.S.; Ko, J.H.: Flow-driven rotor simulation of vertical axis tidal turbines: a comparison of helical and straight blades. Int. J. Nav. Archit. Ocean Eng. 6, 257–268 (2014) Le, T.Q.; Lee, K.S.; Park, J.S.; Ko, J.H.: Flow-driven rotor simulation of vertical axis tidal turbines: a comparison of helical and straight blades. Int. J. Nav. Archit. Ocean Eng. 6, 257–268 (2014)
10.
Zurück zum Zitat Amet, E.; Maı̂tre, T.; Pellone, C.; Achard, J.L.: 2D numerical simulations of blade-vortex interaction in a Darrieus turbine. J. Fluids Eng. 131, 1–15 (2009) Amet, E.; Maı̂tre, T.; Pellone, C.; Achard, J.L.: 2D numerical simulations of blade-vortex interaction in a Darrieus turbine. J. Fluids Eng. 131, 1–15 (2009)
11.
Zurück zum Zitat Barber, R.B.; Motley, M.R.: Cavitating response of passively controlled tidal turbines. J. Fluids Struct. 66, 462–475 (2016) Barber, R.B.; Motley, M.R.: Cavitating response of passively controlled tidal turbines. J. Fluids Struct. 66, 462–475 (2016)
12.
Zurück zum Zitat Rezaeiha, A.; Kalkman, I.; Blocken, B.: Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine. Appl. Energy 197, 132–150 (2017) Rezaeiha, A.; Kalkman, I.; Blocken, B.: Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine. Appl. Energy 197, 132–150 (2017)
13.
Zurück zum Zitat Karthikeyan, T.; Avital, E.J.; Venkatesan, N.; Samad, A.: Optimization of a horizontal axis marine current turbine via surrogate models. Ocean Syst. Eng. 9, 111–133 (2019) Karthikeyan, T.; Avital, E.J.; Venkatesan, N.; Samad, A.: Optimization of a horizontal axis marine current turbine via surrogate models. Ocean Syst. Eng. 9, 111–133 (2019)
14.
Zurück zum Zitat Selig, M.S.; Coverstone-Carroll, V.L.: Application of a genetic algorithm to wind turbine design. J. Energy Resour. Technol. 118, 22–28 (1996) Selig, M.S.; Coverstone-Carroll, V.L.: Application of a genetic algorithm to wind turbine design. J. Energy Resour. Technol. 118, 22–28 (1996)
15.
Zurück zum Zitat Fuglsang, P.; Madsen, H.A.: Optimization method for wind turbine rotors. J. Wind Eng. Ind. Aerodyn. 80, 191–206 (1999) Fuglsang, P.; Madsen, H.A.: Optimization method for wind turbine rotors. J. Wind Eng. Ind. Aerodyn. 80, 191–206 (1999)
16.
Zurück zum Zitat Barthelemy, J.F.M.; Haftka, R.T.: Approximation concepts for optimum structural design—a review. Struct. Optim. 5, 129–144 (1993) Barthelemy, J.F.M.; Haftka, R.T.: Approximation concepts for optimum structural design—a review. Struct. Optim. 5, 129–144 (1993)
17.
Zurück zum Zitat Kumar, P.M.; Seo, J.; Seok, W.; Rhee, S.H.; Samad, A.: Multi-fidelity optimization of blade thickness parameters for a horizontal axis tidal stream turbine. Renew. Energy 135, 277–287 (2018) Kumar, P.M.; Seo, J.; Seok, W.; Rhee, S.H.; Samad, A.: Multi-fidelity optimization of blade thickness parameters for a horizontal axis tidal stream turbine. Renew. Energy 135, 277–287 (2018)
18.
Zurück zum Zitat Huang, B.; Kanemoto, T.: Multi-objective numerical optimization of the front blade pitch angle distribution in a counter-rotating type horizontal-axis tidal turbine. Renew. Energy 81, 837–844 (2015) Huang, B.; Kanemoto, T.: Multi-objective numerical optimization of the front blade pitch angle distribution in a counter-rotating type horizontal-axis tidal turbine. Renew. Energy 81, 837–844 (2015)
19.
Zurück zum Zitat Wood, R.J.K.; Bahaj, A.S.; Turnock, S.R.; Wang, L.; Evans, M.: Tribological design constraints of marine renewable energy systems. Philos. Trans. A Math. Phys. Eng. Sci. 368, 4807–4827 (2010) Wood, R.J.K.; Bahaj, A.S.; Turnock, S.R.; Wang, L.; Evans, M.: Tribological design constraints of marine renewable energy systems. Philos. Trans. A Math. Phys. Eng. Sci. 368, 4807–4827 (2010)
20.
Zurück zum Zitat Benra, F.K.: Numerical and experimental investigation on the flow induced oscillations of a single-blade pump impeller. J. Fluids Eng. 128, 783–793 (2006) Benra, F.K.: Numerical and experimental investigation on the flow induced oscillations of a single-blade pump impeller. J. Fluids Eng. 128, 783–793 (2006)
21.
Zurück zum Zitat Mcewen, L.N., Evans, R., Meunier, M.: Cost-effective tidal turbine blades. In: 4th International Conference on Ocean Energy, 7th October, Dublin (2012) Mcewen, L.N., Evans, R., Meunier, M.: Cost-effective tidal turbine blades. In: 4th International Conference on Ocean Energy, 7th October, Dublin (2012)
22.
Zurück zum Zitat Batten, W.M.J.; Bahaj, A.S.; Molland, A.F.; Chaplin, J.R.: The prediction of the hydrodynamic performance of marine current turbines. Renew. Energy 33, 1085–1096 (2008) Batten, W.M.J.; Bahaj, A.S.; Molland, A.F.; Chaplin, J.R.: The prediction of the hydrodynamic performance of marine current turbines. Renew. Energy 33, 1085–1096 (2008)
23.
Zurück zum Zitat Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32, 1598–1605 (1994) Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32, 1598–1605 (1994)
24.
Zurück zum Zitat Schluntz, J.; Willden, R.H.J.: The effect of blockage on tidal turbine rotor design and performance. Renew. Energy 81, 432–441 (2015) Schluntz, J.; Willden, R.H.J.: The effect of blockage on tidal turbine rotor design and performance. Renew. Energy 81, 432–441 (2015)
25.
Zurück zum Zitat Bai, X.; Avital, E.J.; Munjiza, A.; Williams, J.J.R.: Numerical simulation of a marine current turbine in free surface flow. Renew. Energy 63, 715–723 (2014) Bai, X.; Avital, E.J.; Munjiza, A.; Williams, J.J.R.: Numerical simulation of a marine current turbine in free surface flow. Renew. Energy 63, 715–723 (2014)
26.
Zurück zum Zitat Shalaby, H.; Pachler, K.; Wozniak, K.; Wozniak, G.: Comparative study of the continuous phase flow in a cyclone separator using different turbulence models. Int. J. Numer. Methods Fluids 48, 1175–1197 (2005)MATH Shalaby, H.; Pachler, K.; Wozniak, K.; Wozniak, G.: Comparative study of the continuous phase flow in a cyclone separator using different turbulence models. Int. J. Numer. Methods Fluids 48, 1175–1197 (2005)MATH
27.
Zurück zum Zitat Wilcox, D.C.: Simulation of transition with a two-equation turbulence model. AIAA J. 32, 247–455 (1994)MATH Wilcox, D.C.: Simulation of transition with a two-equation turbulence model. AIAA J. 32, 247–455 (1994)MATH
28.
Zurück zum Zitat Danao, L., Danao, L.A., Abuan, B., Howell, R.: Design analysis of a horizontal axis tidal turbine. In: 3rd Asian Wave and Tidal Conference, 24th–28th October, Singapore (2016) Danao, L., Danao, L.A., Abuan, B., Howell, R.: Design analysis of a horizontal axis tidal turbine. In: 3rd Asian Wave and Tidal Conference, 24th–28th October, Singapore (2016)
29.
Zurück zum Zitat Karthikeyan, T., Mishra, L., Samad, A.: Optimal design of a marine current turbine using CFD & FEA. In: 4th International Conference on Ocean Engineering, 18th–21st February, Chennai, India (2018) Karthikeyan, T., Mishra, L., Samad, A.: Optimal design of a marine current turbine using CFD & FEA. In: 4th International Conference on Ocean Engineering, 18th–21st February, Chennai, India (2018)
30.
Zurück zum Zitat Kolekar, N.; Banerjee, A.: A coupled hydro-structural design optimization for hydrokinetic turbines. J. Renew. Sustain. Energy 5, 1–22 (2013) Kolekar, N.; Banerjee, A.: A coupled hydro-structural design optimization for hydrokinetic turbines. J. Renew. Sustain. Energy 5, 1–22 (2013)
31.
Zurück zum Zitat Li, W.; Zhou, H.; Liu, H.; Lin, Y.; Xu, Q.: Review on the blade design technologies of tidal current turbine. Renew. Sustain. Energy Rev. 63, 414–422 (2016) Li, W.; Zhou, H.; Liu, H.; Lin, Y.; Xu, Q.: Review on the blade design technologies of tidal current turbine. Renew. Sustain. Energy Rev. 63, 414–422 (2016)
32.
Zurück zum Zitat Buckland, H.C.; Masters, I.; Orme, J.A.C.; Baker, T.: Cavitation inception and simulation in blade element momentum theory for modelling tidal stream turbines. Proc. Inst. Mech. Eng. Part A J. Power Energy 227, 479–485 (2013) Buckland, H.C.; Masters, I.; Orme, J.A.C.; Baker, T.: Cavitation inception and simulation in blade element momentum theory for modelling tidal stream turbines. Proc. Inst. Mech. Eng. Part A J. Power Energy 227, 479–485 (2013)
33.
Zurück zum Zitat Murray, R.: Predicting cavitation on marine and hydrokinetic turbine predicting cavitation on marine and hydrokinetic turbine blades with AeroDyn (2017) Murray, R.: Predicting cavitation on marine and hydrokinetic turbine predicting cavitation on marine and hydrokinetic turbine blades with AeroDyn (2017)
34.
Zurück zum Zitat Wimshurst, A.; Vogel, C.; Willden, R.: Cavitation limits on tidal turbine performance. Ocean Eng. 152, 223–233 (2018) Wimshurst, A.; Vogel, C.; Willden, R.: Cavitation limits on tidal turbine performance. Ocean Eng. 152, 223–233 (2018)
35.
Zurück zum Zitat Karthikeyan, T., Avital, E.J., Venkatesan, N., Samad, A.: Design and analysis of a marine current turbine. In: ASME Gas Turbine India Conference, 7th & 8th December, Bangalore, India (2017) Karthikeyan, T., Avital, E.J., Venkatesan, N., Samad, A.: Design and analysis of a marine current turbine. In: ASME Gas Turbine India Conference, 7th & 8th December, Bangalore, India (2017)
36.
Zurück zum Zitat Liu, X.; Ning, F.: New response surface model and its applications in aerodynamic optimization of axial compressor blade profile. Front. Energy Power Eng. China 2, 541–549 (2008) Liu, X.; Ning, F.: New response surface model and its applications in aerodynamic optimization of axial compressor blade profile. Front. Energy Power Eng. China 2, 541–549 (2008)
37.
Zurück zum Zitat Kim, J.H.; Choi, J.H.; Husain, A.; Kim, K.Y.: Multi-objective optimization of a centrifugal compressor impeller through evolutionary algorithms. Proc. Inst. Mech. Eng. Part A J. Power Energy 224, 711–721 (2010) Kim, J.H.; Choi, J.H.; Husain, A.; Kim, K.Y.: Multi-objective optimization of a centrifugal compressor impeller through evolutionary algorithms. Proc. Inst. Mech. Eng. Part A J. Power Energy 224, 711–721 (2010)
38.
Zurück zum Zitat Ma, S.B.; Afzal, A.; Kim, K.Y.: Optimization of ring cavity in a centrifugal compressor based on comparative analysis of optimization algorithms. Appl. Therm. Eng. 138, 633–647 (2018) Ma, S.B.; Afzal, A.; Kim, K.Y.: Optimization of ring cavity in a centrifugal compressor based on comparative analysis of optimization algorithms. Appl. Therm. Eng. 138, 633–647 (2018)
39.
Zurück zum Zitat Simpson, T.W.; Mauery, T.M.; Korte, J.; Mistree, F.: Kriging models for global approximation in simulation-based multidisciplinary design optimization. AIAA J. 39, 2233–2241 (2001) Simpson, T.W.; Mauery, T.M.; Korte, J.; Mistree, F.: Kriging models for global approximation in simulation-based multidisciplinary design optimization. AIAA J. 39, 2233–2241 (2001)
40.
Zurück zum Zitat Ezhilsabareesh, K.; Rhee, S.H.; Samad, A.: Shape optimization of a bidirectional impulse turbine via surrogate models. Eng. Appl. Comput. Fluid Mech. 12, 1–12 (2018) Ezhilsabareesh, K.; Rhee, S.H.; Samad, A.: Shape optimization of a bidirectional impulse turbine via surrogate models. Eng. Appl. Comput. Fluid Mech. 12, 1–12 (2018)
41.
Zurück zum Zitat Cai, X.; Gu, R.; Pan, P.; Zhu, J.: Unsteady aerodynamics simulation of a full-scale horizontal axis wind turbine using CFD methodology. Energy Convers. Manag. 112, 146–156 (2016) Cai, X.; Gu, R.; Pan, P.; Zhu, J.: Unsteady aerodynamics simulation of a full-scale horizontal axis wind turbine using CFD methodology. Energy Convers. Manag. 112, 146–156 (2016)
42.
Zurück zum Zitat Bangga, G.; Lutz, T.; Dessoky, A.; Krämer, E.: Unsteady Navier–Stokes studies on loads, wake, and dynamic stall characteristics of a two-bladed vertical axis wind turbine. J. Renew. Sustain. Energy 9, 1–13 (2017) Bangga, G.; Lutz, T.; Dessoky, A.; Krämer, E.: Unsteady Navier–Stokes studies on loads, wake, and dynamic stall characteristics of a two-bladed vertical axis wind turbine. J. Renew. Sustain. Energy 9, 1–13 (2017)
43.
Zurück zum Zitat Atcheson, M.; MacKinnon, P.; Elsaesser, B.: A large scale model experimental study of a tidal turbine in uniform steady flow. Ocean Eng. 110, 51–61 (2015) Atcheson, M.; MacKinnon, P.; Elsaesser, B.: A large scale model experimental study of a tidal turbine in uniform steady flow. Ocean Eng. 110, 51–61 (2015)
44.
Zurück zum Zitat Waitz, I.A.; Qiu, Y.J.; Manning, T.A.; Fung, A.K.S.; Elliot, J.K.; Kerwin, J.M.; Krasnodebski, J.K.; Sullivan, M.N.O.; Tew, D.E.; Greitzer, E.M.; Marble, F.E.; Tan, C.S.; Tillman, T.G.: Enhanced mixing with streamwise vorticity. Prog. Aerosp. Sci. 33, 323–351 (1997) Waitz, I.A.; Qiu, Y.J.; Manning, T.A.; Fung, A.K.S.; Elliot, J.K.; Kerwin, J.M.; Krasnodebski, J.K.; Sullivan, M.N.O.; Tew, D.E.; Greitzer, E.M.; Marble, F.E.; Tan, C.S.; Tillman, T.G.: Enhanced mixing with streamwise vorticity. Prog. Aerosp. Sci. 33, 323–351 (1997)
45.
Zurück zum Zitat Suzuki, T.; Mahfuz, H.: Analysis of large-scale ocean current turbine blades using fluid–structure interaction and blade element momentum theory. Ships Offshore Struct. 13, 451–458 (2018) Suzuki, T.; Mahfuz, H.: Analysis of large-scale ocean current turbine blades using fluid–structure interaction and blade element momentum theory. Ships Offshore Struct. 13, 451–458 (2018)
46.
Zurück zum Zitat Kumar, J.; Wurm, F.H.: Bi-directional fluid–structure interaction for large deformation of layered composite propeller blades. J. Fluids Struct. 57, 32–48 (2015) Kumar, J.; Wurm, F.H.: Bi-directional fluid–structure interaction for large deformation of layered composite propeller blades. J. Fluids Struct. 57, 32–48 (2015)
47.
Zurück zum Zitat Bahaj, A.S.; Molland, A.F.; Chaplin, J.R.; Batten, W.M.J.: Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank. Renew. Energy 32, 407–426 (2007) Bahaj, A.S.; Molland, A.F.; Chaplin, J.R.; Batten, W.M.J.: Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank. Renew. Energy 32, 407–426 (2007)
48.
Zurück zum Zitat Batten, W.M.J.; Bahaj, A.S.; Molland, A.F.; Chaplin, J.R.: Experimentally validated numerical method for the hydrodynamic design of horizontal axis tidal turbines. Ocean Eng. 34, 1013–1020 (2007) Batten, W.M.J.; Bahaj, A.S.; Molland, A.F.; Chaplin, J.R.: Experimentally validated numerical method for the hydrodynamic design of horizontal axis tidal turbines. Ocean Eng. 34, 1013–1020 (2007)
49.
Zurück zum Zitat Goundar, J.N.; Ahmed, M.R.; Lee, Y.H.: Numerical and experimental studies on hydrofoils for marine current turbines. Renew. Energy 42, 173–179 (2012) Goundar, J.N.; Ahmed, M.R.; Lee, Y.H.: Numerical and experimental studies on hydrofoils for marine current turbines. Renew. Energy 42, 173–179 (2012)
50.
Zurück zum Zitat Morris, C.E.; O’Doherty, D.M.; O’Doherty, T.; Mason, J.A.: Kinetic energy extraction of a tidal stream turbine and its sensitivity to structural stiffness attenuation. Renew. Energy 88, 30–39 (2016) Morris, C.E.; O’Doherty, D.M.; O’Doherty, T.; Mason, J.A.: Kinetic energy extraction of a tidal stream turbine and its sensitivity to structural stiffness attenuation. Renew. Energy 88, 30–39 (2016)
51.
Zurück zum Zitat Wei, X.; Huang, B.; Liu, P.; Kanemoto, T.; Wang, L.: Experimental investigation into the effects of blade pitch angle and axial distance on the performance of a counter-rotating tidal turbine. Ocean Eng. 110, 78–88 (2015) Wei, X.; Huang, B.; Liu, P.; Kanemoto, T.; Wang, L.: Experimental investigation into the effects of blade pitch angle and axial distance on the performance of a counter-rotating tidal turbine. Ocean Eng. 110, 78–88 (2015)
52.
Zurück zum Zitat Yang, B.; Shu, X.W.: Hydrofoil optimization and experimental validation in helical vertical axis turbine for power generation from marine current. Ocean Eng. 42, 35–46 (2012) Yang, B.; Shu, X.W.: Hydrofoil optimization and experimental validation in helical vertical axis turbine for power generation from marine current. Ocean Eng. 42, 35–46 (2012)
53.
Zurück zum Zitat Park, S.; Park, S.; Rhee, S.H.: Influence of blade deformation and yawed inflow on performance of a horizontal axis tidal stream turbine. Renew. Energy 92, 321–332 (2016) Park, S.; Park, S.; Rhee, S.H.: Influence of blade deformation and yawed inflow on performance of a horizontal axis tidal stream turbine. Renew. Energy 92, 321–332 (2016)
54.
Zurück zum Zitat Tahani, M.; Babayan, N.; Astaraei, F.R.; Moghadam, A.: Multi objective optimization of horizontal axis tidal current turbines, using meta heuristics algorithms. Energy Convers. Manag. 103, 487–498 (2015) Tahani, M.; Babayan, N.; Astaraei, F.R.; Moghadam, A.: Multi objective optimization of horizontal axis tidal current turbines, using meta heuristics algorithms. Energy Convers. Manag. 103, 487–498 (2015)
55.
Zurück zum Zitat Zhu, G.J.; Guo, P.C.; Luo, X.Q.; Feng, J.J.: The multi-objective optimization of the horizontal-axis marine current turbine based on NSGA-II algorithm. IOP Conf. Ser. Earth Environ. Sci. 15, 1–8 (2012) Zhu, G.J.; Guo, P.C.; Luo, X.Q.; Feng, J.J.: The multi-objective optimization of the horizontal-axis marine current turbine based on NSGA-II algorithm. IOP Conf. Ser. Earth Environ. Sci. 15, 1–8 (2012)
Metadaten
Titel
Hydrostructural Optimization of a Marine Current Turbine Through Multi-fidelity Numerical Models
verfasst von
Karthikeyan Thandayutham
Abdus Samad
Publikationsdatum
08.10.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 2/2020
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-019-04185-y

Weitere Artikel der Ausgabe 2/2020

Arabian Journal for Science and Engineering 2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.