Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 12/2012

01.12.2012

Hydrothermal Growth Mechanism of Controllable Hydrophilic Titanate Nanostructures on Medical NiTi Shape Memory Alloy

verfasst von: X. Rao, C. L. Chu, C. Y. Chung, Paul K. Chu

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 12/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Different titanate nanostructures were deposited on the surface of NiTi by a hydrothermal process using 5-20 M NaOH at 90-150 °C for 6-72 h. SEM and XRD analyses revealed that different structures such as nanoflakes, nanorods, nanograins, nanofibers, microwhiskers, etc., were formed. As the processing time was increased, the nanoflakes evolve into nanofibers or microwhiskers. Compared with pristine NiTi, the new surfaces displayed different degrees of hydrophilicity. A formation mechanism adopting the growth unit model of anion coordination-polyhedra is proposed. The general formation of titanate nanostructures can be visualized as a sequence of nucleation, formation, and combination of the growth units. The excellent controllability of this process with precise accuracy offers incredible potential in the surface modification of NiTi biomedical materials for medical applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat T. Duerig, A. Pelton, and D. Stockel, An Overview of Nitinol Medical Applications, Mater. Sci. Eng. A, 1999, 273–275, p 149–160 T. Duerig, A. Pelton, and D. Stockel, An Overview of Nitinol Medical Applications, Mater. Sci. Eng. A, 1999, 273–275, p 149–160
2.
Zurück zum Zitat C.L. Chu, R.M. Wang, T. Hu, L.H. Yin, Y.P. Pu, P.H. Lin, S.L. Wu, C.Y. Chung, K.W.K. Yeung, and Paul K. Chu, Surface Structure and Biomedical Properties of Chemically Polished and Electropolished NiTi Shape Memory Alloys, Mater. Sci. Eng. C, 2008, 28, p 1430–1434CrossRef C.L. Chu, R.M. Wang, T. Hu, L.H. Yin, Y.P. Pu, P.H. Lin, S.L. Wu, C.Y. Chung, K.W.K. Yeung, and Paul K. Chu, Surface Structure and Biomedical Properties of Chemically Polished and Electropolished NiTi Shape Memory Alloys, Mater. Sci. Eng. C, 2008, 28, p 1430–1434CrossRef
3.
Zurück zum Zitat X. Liu, P.K. Chu, and C. Ding, Surface Nano-Functionalization of Biomaterials, Mater. Sci. Eng. R, 2004, 47, p 49–121CrossRef X. Liu, P.K. Chu, and C. Ding, Surface Nano-Functionalization of Biomaterials, Mater. Sci. Eng. R, 2004, 47, p 49–121CrossRef
4.
Zurück zum Zitat S. Shabalovskaya, J. Anderegg, and J. Van Humbeeck, Critical Overview of Nitinol Surfaces and Their Modifications for Medical Applications, Acta Biomater., 2008, 4, p 447–467CrossRef S. Shabalovskaya, J. Anderegg, and J. Van Humbeeck, Critical Overview of Nitinol Surfaces and Their Modifications for Medical Applications, Acta Biomater., 2008, 4, p 447–467CrossRef
5.
Zurück zum Zitat E. Conforto, D. Caillard, L. Muller, and F.A. Muller, The Structure of Titanate Nanobelts Used as Seeds for the Nucleation of Hydroxyapatite at the Surface of Titanium Implants, Acta Biomater., 2008, 4, p 1934–1943CrossRef E. Conforto, D. Caillard, L. Muller, and F.A. Muller, The Structure of Titanate Nanobelts Used as Seeds for the Nucleation of Hydroxyapatite at the Surface of Titanium Implants, Acta Biomater., 2008, 4, p 1934–1943CrossRef
6.
Zurück zum Zitat M.J. Dalby, N. Gadegaard, R. Tare, A. Andar, M.O. Riehle, P. Herzyk, C.D.W. Wilkinson, and R.O.C. Oreffo, The Control of Human Mesenchymal Cell Differentiation Using Nanoscale Symmetry and Disorder, Nat. Mater., 2007, 6, p 997–1003CrossRef M.J. Dalby, N. Gadegaard, R. Tare, A. Andar, M.O. Riehle, P. Herzyk, C.D.W. Wilkinson, and R.O.C. Oreffo, The Control of Human Mesenchymal Cell Differentiation Using Nanoscale Symmetry and Disorder, Nat. Mater., 2007, 6, p 997–1003CrossRef
7.
Zurück zum Zitat M. Karlsson and L. Tang, Surface Morphology and Adsorbed Proteins Affect Phagocyte Responses to Nano-Porous Alumina, J. Mater. Sci. Mater. Med., 2006, 17, p 1101–1111CrossRef M. Karlsson and L. Tang, Surface Morphology and Adsorbed Proteins Affect Phagocyte Responses to Nano-Porous Alumina, J. Mater. Sci. Mater. Med., 2006, 17, p 1101–1111CrossRef
8.
Zurück zum Zitat A.-S. Andersson, J. Brink, U. Lidberg, and D.S. Sutherland, Influence of Systematically Varied Nanoscale Topography on the Morphology of Epithelial Cells, IEEE Trans. Nanobiosci., 2003, 2(2), p 49–57CrossRef A.-S. Andersson, J. Brink, U. Lidberg, and D.S. Sutherland, Influence of Systematically Varied Nanoscale Topography on the Morphology of Epithelial Cells, IEEE Trans. Nanobiosci., 2003, 2(2), p 49–57CrossRef
9.
Zurück zum Zitat G. Wei, Q. Jin, W.V. Giannobile, and P.X. Ma, The Enhancement of Osteogenesis by Nano-Fibrous Scaffolds Incorporating rhBMP-7 Nanospheres, Biomaterials, 2007, 28(12), p 2087–2096CrossRef G. Wei, Q. Jin, W.V. Giannobile, and P.X. Ma, The Enhancement of Osteogenesis by Nano-Fibrous Scaffolds Incorporating rhBMP-7 Nanospheres, Biomaterials, 2007, 28(12), p 2087–2096CrossRef
10.
Zurück zum Zitat N. Sugiyama, H. Xu, T. Onoki, Y. Hoshikawa, T. Watanabe, N. Matsushita, X. Wang, F. Qin, M. Fukuhara, M. Tsukamoto, N. Abe, Y. Komizo, A. Inoue, and M. Yoshimura, Bioactive Titanate Nanomesh Layer on the Ti-Based Bulk Metallic Glass by Hydrothermal-Electrochemical Technique, Acta Biomater., 2009, 5(4), p 1367–1373CrossRef N. Sugiyama, H. Xu, T. Onoki, Y. Hoshikawa, T. Watanabe, N. Matsushita, X. Wang, F. Qin, M. Fukuhara, M. Tsukamoto, N. Abe, Y. Komizo, A. Inoue, and M. Yoshimura, Bioactive Titanate Nanomesh Layer on the Ti-Based Bulk Metallic Glass by Hydrothermal-Electrochemical Technique, Acta Biomater., 2009, 5(4), p 1367–1373CrossRef
11.
Zurück zum Zitat C.X. Wang, M. Wang, and X. Zhou, Electrochemical Impedance Spectroscopy Study of the Nucleation and Growth of Apatite on Chemically Treated Titanium, Langmuir, 2002, 18, p 7641–7647CrossRef C.X. Wang, M. Wang, and X. Zhou, Electrochemical Impedance Spectroscopy Study of the Nucleation and Growth of Apatite on Chemically Treated Titanium, Langmuir, 2002, 18, p 7641–7647CrossRef
12.
Zurück zum Zitat V. Stengl, S. Bakardjieva, J. Subrt, E. Vecernıkova, L. Szatmary, M. Klementova, and V. Balek, Sodium Titanate Nanorods: Preparation, Microstructure Characterization and Photocatalytic Activity, Appl. Catal. B, 2006, 63, p 20–30CrossRef V. Stengl, S. Bakardjieva, J. Subrt, E. Vecernıkova, L. Szatmary, M. Klementova, and V. Balek, Sodium Titanate Nanorods: Preparation, Microstructure Characterization and Photocatalytic Activity, Appl. Catal. B, 2006, 63, p 20–30CrossRef
13.
Zurück zum Zitat H. Zhang, X.P. Gao, G.R. Li, T.Y. Yan, and H.Y. Zhu, Electrochemical Lithium Storage of Sodium Titanate Nanotubes and Nanorods, Electrochim. Acta, 2008, 53, p 7061–7068CrossRef H. Zhang, X.P. Gao, G.R. Li, T.Y. Yan, and H.Y. Zhu, Electrochemical Lithium Storage of Sodium Titanate Nanotubes and Nanorods, Electrochim. Acta, 2008, 53, p 7061–7068CrossRef
14.
Zurück zum Zitat A. Elsanousi, E.M. Elssfah, J. Zhang, J. Lin, H.S. Song, and C. Tang, Hydrothermal Treatment Duration Effect on the Transformation of Titanate Nanotubes into Nanoribbons, J. Phys. Chem. C, 2007, 111, p 14353–14357CrossRef A. Elsanousi, E.M. Elssfah, J. Zhang, J. Lin, H.S. Song, and C. Tang, Hydrothermal Treatment Duration Effect on the Transformation of Titanate Nanotubes into Nanoribbons, J. Phys. Chem. C, 2007, 111, p 14353–14357CrossRef
15.
Zurück zum Zitat R.A. Zarate, S. Fuentes, A.L. Cabrera, and V.M. Fuenzalida, Structural Characterization of Single Crystals of Sodium Titanate Nanowires Prepared by Hydrothermal Process, J. Cryst. Growth, 2008, 310, p 3630–3637CrossRef R.A. Zarate, S. Fuentes, A.L. Cabrera, and V.M. Fuenzalida, Structural Characterization of Single Crystals of Sodium Titanate Nanowires Prepared by Hydrothermal Process, J. Cryst. Growth, 2008, 310, p 3630–3637CrossRef
16.
Zurück zum Zitat H. Yu, J. Yu, B. Cheng, and M. Zhou, Effects of Hydrothermal Post-Treatment on Microstructures and Morphology of Titanate Nanoribbons, J. Solid State Electron., 2006, 179, p 349–354 H. Yu, J. Yu, B. Cheng, and M. Zhou, Effects of Hydrothermal Post-Treatment on Microstructures and Morphology of Titanate Nanoribbons, J. Solid State Electron., 2006, 179, p 349–354
17.
Zurück zum Zitat H.-K. Seoa, G.-S. Kima, S.G. Ansaria, Y.-S. Kima, H.-S. Shina, K.-H. Shimb, and E.-K. Suhb, A Study on the Structure/Phase Transformation of Titanate Nanotubes Synthesized at Various Hydrothermal Temperatures, Sol Energy Mater Sol C, 2008, 92, p 1533–1539CrossRef H.-K. Seoa, G.-S. Kima, S.G. Ansaria, Y.-S. Kima, H.-S. Shina, K.-H. Shimb, and E.-K. Suhb, A Study on the Structure/Phase Transformation of Titanate Nanotubes Synthesized at Various Hydrothermal Temperatures, Sol Energy Mater Sol C, 2008, 92, p 1533–1539CrossRef
18.
Zurück zum Zitat X-d Menga, D-z Wang, J-h Liu, and S-y Zhang, Preparation and Characterization of Sodium Titanate Nanowires from Brookite Nanocrystallites, Mater. Res. Bull., 2004, 39, p 2163–2170CrossRef X-d Menga, D-z Wang, J-h Liu, and S-y Zhang, Preparation and Characterization of Sodium Titanate Nanowires from Brookite Nanocrystallites, Mater. Res. Bull., 2004, 39, p 2163–2170CrossRef
19.
Zurück zum Zitat H. Zhang, H. Zhao, P. Liu, S. Zhang, and G. Li, Direct Growth of Hierarchically Structured Titanate Nanotube Filtration Membrane for Removal of Waterborne Pathogens, J. Membr. Sci., 2009, 343, p 212–218CrossRef H. Zhang, H. Zhao, P. Liu, S. Zhang, and G. Li, Direct Growth of Hierarchically Structured Titanate Nanotube Filtration Membrane for Removal of Waterborne Pathogens, J. Membr. Sci., 2009, 343, p 212–218CrossRef
20.
Zurück zum Zitat M. Ravelingien, S. Mullens, J. Luyten, V. Meynen, E. Vinck, C. Vervaet, and J.P. Remon, Thermal Decomposition of Bioactive Sodium Titanate Surfaces, Appl. Surf. Sci., 2009, 255, p 9539–9542CrossRef M. Ravelingien, S. Mullens, J. Luyten, V. Meynen, E. Vinck, C. Vervaet, and J.P. Remon, Thermal Decomposition of Bioactive Sodium Titanate Surfaces, Appl. Surf. Sci., 2009, 255, p 9539–9542CrossRef
21.
Zurück zum Zitat Y. Guo, N.-H. Lee, H.-J. Oh, C.-R. Yoon, K.-S. Park, S.-C. Jung, and S.-J. Kim, The Growth of Oriented Titanate Nanotube Thin Film on Titanium Metal Flake, Surf. Coat. Technol., 2008, 202, p 5431–5435CrossRef Y. Guo, N.-H. Lee, H.-J. Oh, C.-R. Yoon, K.-S. Park, S.-C. Jung, and S.-J. Kim, The Growth of Oriented Titanate Nanotube Thin Film on Titanium Metal Flake, Surf. Coat. Technol., 2008, 202, p 5431–5435CrossRef
22.
Zurück zum Zitat S. Wu, X. Liu, T. Hu, P.K. Chu, J.P.Y. Ho, Y.L. Chan, K.W.K. Yeung, C.L. Chu, T.F. Hung, K.F. Huo, C.Y. Chung, W.W. Lu, K.M.C. Cheung, and K.D.K. Luk, A Biomimetic Hierarchical Scaffold: Natural Growth of Nanotitanates on Three-Dimensional Microporous Ti-Based Metals, Nano Lett., 2008, 8(11), p 3803–3808CrossRef S. Wu, X. Liu, T. Hu, P.K. Chu, J.P.Y. Ho, Y.L. Chan, K.W.K. Yeung, C.L. Chu, T.F. Hung, K.F. Huo, C.Y. Chung, W.W. Lu, K.M.C. Cheung, and K.D.K. Luk, A Biomimetic Hierarchical Scaffold: Natural Growth of Nanotitanates on Three-Dimensional Microporous Ti-Based Metals, Nano Lett., 2008, 8(11), p 3803–3808CrossRef
23.
Zurück zum Zitat W.Z. Zhong and S.K. Hua, Morphology of Crystal Growth, Science Press, Beijing, 1999 W.Z. Zhong and S.K. Hua, Morphology of Crystal Growth, Science Press, Beijing, 1999
24.
Zurück zum Zitat Y. Zhang, T. Qi, and Y. Zhang, A Novel Preparation of Titanium Dioxide from Titanium Slag, Hydrometallurgy, 2009, 96, p 52–56CrossRef Y. Zhang, T. Qi, and Y. Zhang, A Novel Preparation of Titanium Dioxide from Titanium Slag, Hydrometallurgy, 2009, 96, p 52–56CrossRef
25.
Zurück zum Zitat D.L. Morgan, H.-Y. Zhu, R.L. Frost, and E.R. Waclawik, Determination of a Morphological Phase Diagram of Titania/Titanate Nanostructures from Alkaline Hydrothermal Treatment of Degussa P25, Chem. Mater., 2008, 20, p 3800–3802CrossRef D.L. Morgan, H.-Y. Zhu, R.L. Frost, and E.R. Waclawik, Determination of a Morphological Phase Diagram of Titania/Titanate Nanostructures from Alkaline Hydrothermal Treatment of Degussa P25, Chem. Mater., 2008, 20, p 3800–3802CrossRef
26.
Zurück zum Zitat W. Li, E. Shi, W. Zhong, and Z. Yin, Growth Mechanism and Growth Habit of Oxide Crystals, J. Cryst. Growth, 1999, 203, p 186–196CrossRef W. Li, E. Shi, W. Zhong, and Z. Yin, Growth Mechanism and Growth Habit of Oxide Crystals, J. Cryst. Growth, 1999, 203, p 186–196CrossRef
27.
Zurück zum Zitat C. Xia, E. Shi, W. Zhong, and J. Guo, Hydrothermal Synthesis of BaTiO3 Nano/Microcrystals, J. Cryst. Growth, 1996, 166, p 961–966CrossRef C. Xia, E. Shi, W. Zhong, and J. Guo, Hydrothermal Synthesis of BaTiO3 Nano/Microcrystals, J. Cryst. Growth, 1996, 166, p 961–966CrossRef
28.
Zurück zum Zitat Y. Zheng, E. Shi, W. Li, Z. Chen, W. Zhong, and X. Hu, The Formation of Titania Polymorphs Under Hydrothermal Condition, Sci. China E, 2002, 45, p 120–129CrossRef Y. Zheng, E. Shi, W. Li, Z. Chen, W. Zhong, and X. Hu, The Formation of Titania Polymorphs Under Hydrothermal Condition, Sci. China E, 2002, 45, p 120–129CrossRef
29.
Zurück zum Zitat Y.W.L. Lim, Y. Tang, Y.H. Cheng, and Z. Chen, Morphology, Crystal Structure and Adsorption Performance of Hydrothermally Synthesized Titania and Titanate Nanostructures. Nanoscale. doi: 10.1039/c0nr00440e Y.W.L. Lim, Y. Tang, Y.H. Cheng, and Z. Chen, Morphology, Crystal Structure and Adsorption Performance of Hydrothermally Synthesized Titania and Titanate Nanostructures. Nanoscale. doi: 10.​1039/​c0nr00440e
30.
Zurück zum Zitat C. Zhang, X. Jiang, B. Tian, X. Wang, X. Zhang, and Z. Du, Modification and Assembly of Titanate Sodium Nanotubes, Colloids Surf. A, 2005, 257–258, p 521–524CrossRef C. Zhang, X. Jiang, B. Tian, X. Wang, X. Zhang, and Z. Du, Modification and Assembly of Titanate Sodium Nanotubes, Colloids Surf. A, 2005, 257–258, p 521–524CrossRef
31.
Zurück zum Zitat R.N. Wenzel, Resistance of Solid Surfaces to Wetting by Water, Ind. Eng. Chem., 1936, 28, p 988–994CrossRef R.N. Wenzel, Resistance of Solid Surfaces to Wetting by Water, Ind. Eng. Chem., 1936, 28, p 988–994CrossRef
32.
Zurück zum Zitat M. Miyauchi and H. Tokudome, Low-Reflective and Super-Hydrophilic Properties of Titanate or Titania Nanotube Thin Films via Layer-by-Layer Assembly, Thin Solid Films, 2006, 515, p 2091–2096CrossRef M. Miyauchi and H. Tokudome, Low-Reflective and Super-Hydrophilic Properties of Titanate or Titania Nanotube Thin Films via Layer-by-Layer Assembly, Thin Solid Films, 2006, 515, p 2091–2096CrossRef
33.
Zurück zum Zitat N.A. Patankar, On the Modeling of Hydrophobic Contact Angles on Rough Surfaces, Langmuir, 2003, 19, p 1249–1253CrossRef N.A. Patankar, On the Modeling of Hydrophobic Contact Angles on Rough Surfaces, Langmuir, 2003, 19, p 1249–1253CrossRef
Metadaten
Titel
Hydrothermal Growth Mechanism of Controllable Hydrophilic Titanate Nanostructures on Medical NiTi Shape Memory Alloy
verfasst von
X. Rao
C. L. Chu
C. Y. Chung
Paul K. Chu
Publikationsdatum
01.12.2012
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 12/2012
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-012-0267-3

Weitere Artikel der Ausgabe 12/2012

Journal of Materials Engineering and Performance 12/2012 Zur Ausgabe

EditorialNotes

Editorial

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.