Skip to main content

2017 | OriginalPaper | Buchkapitel

21. Hydrothermal Processing of Microalgae

verfasst von : Cristina González-Fernández, Lara Méndez, Mercedes Ballesteros, Elia Tomás-Pejó

Erschienen in: Hydrothermal Processing in Biorefineries

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As a result of the increasing population and industrial development, there is an enormous energy demand worldwide. For this reason, the research on the potential of microalgae (including also cyanobacteria) as a third-generation feedstock for bioenergy production has markedly increased. Besides biofuels (biogas, bioethanol, biodiesel, etc.), algae biomass is one of the most promising feedstock to produce high-value products in a sustainable way.
The use of microalgae has many advantages over first- and second-generation raw materials. This is due to their fast growth rates due to an efficient solar conversion into biomass; capability of growing under several conditions, including in wastewater; reduced need for water and other resource inputs; and the possibility of not using arable lands for their cultivation.
Independently of the product of interest, most of the production processes from microalgal biomass need some hydrothermal processing step. This implies a pretreatment step at high temperature, even at high pressure, with or without acid addition. Hydrothermal pretreatment may disrupt microalgae cell wall for biogas production or can involve partial biomass hydrolysis as it is the case for bioethanol production.
This chapter includes an updated revision of hydrothermal treatments commonly used to process microalgal biomass mainly for biofuels production and resumes how different temperatures and other treatment parameters affect final product titers and yields.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Afi L, Metzger P, Largeau C, Connan J, Berkaloff C, Rousseau B (1996) Bacterial degradation of green microalgae: incubation of Chlorella emersonii and Chlorella vulgaris with Pseudomonas oleovorans and Flavobacterium aquatile. Org Geochem 25:117–130CrossRef Afi L, Metzger P, Largeau C, Connan J, Berkaloff C, Rousseau B (1996) Bacterial degradation of green microalgae: incubation of Chlorella emersonii and Chlorella vulgaris with Pseudomonas oleovorans and Flavobacterium aquatile. Org Geochem 25:117–130CrossRef
Zurück zum Zitat Alzate ME, Muñoz R, Rogalla F, Fdz-Polanco F, Pérez-Elvira SI (2012) Biochemical methane potential of microalgae: influence of substrate to inoculum ratio, biomass concentration and pretreatment. Bioresour Technol 123:488–494CrossRef Alzate ME, Muñoz R, Rogalla F, Fdz-Polanco F, Pérez-Elvira SI (2012) Biochemical methane potential of microalgae: influence of substrate to inoculum ratio, biomass concentration and pretreatment. Bioresour Technol 123:488–494CrossRef
Zurück zum Zitat Alzate ME, Muñoz R, Rogalla F, Fdz-Polanco F, Pérez-Elvira SI (2014) Biochemical methane potential of microalgae biomass after lipid extraction. Chem Eng J 243:405–410CrossRef Alzate ME, Muñoz R, Rogalla F, Fdz-Polanco F, Pérez-Elvira SI (2014) Biochemical methane potential of microalgae biomass after lipid extraction. Chem Eng J 243:405–410CrossRef
Zurück zum Zitat Batista AP, Moura P, Marques PASS, Ortigueira J, Alves L, Gouveia L (2014) Scenedesmus obliquus as feedstock for biohydrogen production by Enterobacter aerogenes and Clostridium butyricum. Fuel 117:537–543CrossRef Batista AP, Moura P, Marques PASS, Ortigueira J, Alves L, Gouveia L (2014) Scenedesmus obliquus as feedstock for biohydrogen production by Enterobacter aerogenes and Clostridium butyricum. Fuel 117:537–543CrossRef
Zurück zum Zitat Bermejo MD, Cocero MJ (2006) Destruction of an industrial wastewater by supercritical water oxidation in a transpiring wall reactor. J Hazard Mater 137:965–971CrossRef Bermejo MD, Cocero MJ (2006) Destruction of an industrial wastewater by supercritical water oxidation in a transpiring wall reactor. J Hazard Mater 137:965–971CrossRef
Zurück zum Zitat Biller P, Ross AB (2011) Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresour Technol 102:215–225CrossRef Biller P, Ross AB (2011) Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresour Technol 102:215–225CrossRef
Zurück zum Zitat Biller P, Friedman C, Ross AB (2013) Hydrothermal microwave processing of microalgae as a pre-treatment and extraction technique for bio-fuels and bio-products. Bioresour Technol 136:188–195CrossRef Biller P, Friedman C, Ross AB (2013) Hydrothermal microwave processing of microalgae as a pre-treatment and extraction technique for bio-fuels and bio-products. Bioresour Technol 136:188–195CrossRef
Zurück zum Zitat Bohutskyi P, Bouwer E (2013) Biogas production from algae and cyanobacteria through anaerobic digestion: a review, analysis, and research needs. In: Lee JW (ed) Advanced biofuels and bioproducts. Springer, New York, NY, pp 873–975CrossRef Bohutskyi P, Bouwer E (2013) Biogas production from algae and cyanobacteria through anaerobic digestion: a review, analysis, and research needs. In: Lee JW (ed) Advanced biofuels and bioproducts. Springer, New York, NY, pp 873–975CrossRef
Zurück zum Zitat Bougrier C, Delgenès JP, Carrère H (2008) Effects of thermal treatments on five different waste activated sludge samples solubilisation, physical properties and anaerobic digestion. Chem Eng J 139:236–244CrossRef Bougrier C, Delgenès JP, Carrère H (2008) Effects of thermal treatments on five different waste activated sludge samples solubilisation, physical properties and anaerobic digestion. Chem Eng J 139:236–244CrossRef
Zurück zum Zitat Caporgno MP, Pruvost J, Legrand J, Lepine O, Tazerout M, Bengoa C (2016) Hydrothermal liquefaction of Nannochloropsis oceanica in different solvents. Bioresour Technol 214:404–410CrossRef Caporgno MP, Pruvost J, Legrand J, Lepine O, Tazerout M, Bengoa C (2016) Hydrothermal liquefaction of Nannochloropsis oceanica in different solvents. Bioresour Technol 214:404–410CrossRef
Zurück zum Zitat Chen H, Zhou D, Luo G, Zhang S, Chen J (2015) Macroalgae for biofuels production: progress and perspectives. Renew Sustain Energy Rev 47:427–437CrossRef Chen H, Zhou D, Luo G, Zhang S, Chen J (2015) Macroalgae for biofuels production: progress and perspectives. Renew Sustain Energy Rev 47:427–437CrossRef
Zurück zum Zitat Cho S, Park S, Seon J, Yu J, Lee T (2013) Evaluation of thermal, ultrasonic and alkali pretreatments on mixed-microalgal biomass to enhance anaerobic methane production. Bioresour Technol 143:330–336CrossRef Cho S, Park S, Seon J, Yu J, Lee T (2013) Evaluation of thermal, ultrasonic and alkali pretreatments on mixed-microalgal biomass to enhance anaerobic methane production. Bioresour Technol 143:330–336CrossRef
Zurück zum Zitat Choi JA, Hwang JH, Dempsey BA, Abou-Shanab RAI, Min B, Song H et al (2011) Enhancement of fermentative bioenergy (ethanol/hydrogen) production using ultrasonication of Scenedesmus obliquus YSW15 cultivated in swine wastewater effluent. Energy Environ Sci 4:3513–3520CrossRef Choi JA, Hwang JH, Dempsey BA, Abou-Shanab RAI, Min B, Song H et al (2011) Enhancement of fermentative bioenergy (ethanol/hydrogen) production using ultrasonication of Scenedesmus obliquus YSW15 cultivated in swine wastewater effluent. Energy Environ Sci 4:3513–3520CrossRef
Zurück zum Zitat Day JG, Slocombe SP, Stanley MS (2012) Overcoming biological constraints to enable the exploitation of microalgae for biofuels. Bioresour Technol 109:245–251CrossRef Day JG, Slocombe SP, Stanley MS (2012) Overcoming biological constraints to enable the exploitation of microalgae for biofuels. Bioresour Technol 109:245–251CrossRef
Zurück zum Zitat Demuez M, Mahdy A, Tomás-Pejó E, González-Fernández C, Ballesteros M (2015) Enzymatic cell disruption of microalgae biomass in biorefinery processes. Biotechnol Bioeng 112:1955–1966CrossRef Demuez M, Mahdy A, Tomás-Pejó E, González-Fernández C, Ballesteros M (2015) Enzymatic cell disruption of microalgae biomass in biorefinery processes. Biotechnol Bioeng 112:1955–1966CrossRef
Zurück zum Zitat Domozych DS, Ciancia M, Fangel JU, Mikkelsen MD, Ulvskov P, Willats WGT (2012) The cell walls of green algae: a journey through evolution and diversity. Front Plant Sci 3:1–7CrossRef Domozych DS, Ciancia M, Fangel JU, Mikkelsen MD, Ulvskov P, Willats WGT (2012) The cell walls of green algae: a journey through evolution and diversity. Front Plant Sci 3:1–7CrossRef
Zurück zum Zitat Faeth JL, Savage PE (2016) Effects of processing conditions on biocrude yields from fast hydrothermal liquefaction of microalgae. Bioresour Technol 206:290–293CrossRef Faeth JL, Savage PE (2016) Effects of processing conditions on biocrude yields from fast hydrothermal liquefaction of microalgae. Bioresour Technol 206:290–293CrossRef
Zurück zum Zitat Faeth JL, Savage PE, Jarvis JM, McKenna AM (2016) Characterization of products from fast and isothermal hydrothermal liquefaction of microalgae. AIChE J 62:815–828CrossRef Faeth JL, Savage PE, Jarvis JM, McKenna AM (2016) Characterization of products from fast and isothermal hydrothermal liquefaction of microalgae. AIChE J 62:815–828CrossRef
Zurück zum Zitat de Godos I, Blanco S, García-Encina PA, Becares E, Muñoz R (2009) Long-term operation of high rate algal ponds for the bioremediation of piggery wastewaters at high loading rates. Bioresour Technol 100:4332–4339CrossRef de Godos I, Blanco S, García-Encina PA, Becares E, Muñoz R (2009) Long-term operation of high rate algal ponds for the bioremediation of piggery wastewaters at high loading rates. Bioresour Technol 100:4332–4339CrossRef
Zurück zum Zitat González-Fernández C, Ballesteros M (2012) Linking microalgae and cyanobacteria culture conditions and key-enzymes for carbohydrate accumulation. Biotechnol Adv 30:1655–1661CrossRef González-Fernández C, Ballesteros M (2012) Linking microalgae and cyanobacteria culture conditions and key-enzymes for carbohydrate accumulation. Biotechnol Adv 30:1655–1661CrossRef
Zurück zum Zitat González-Fernández C, Sialve B, Bernet N, Steyer JP (2012a) Thermal pretreatment to improve methane production of Scenedesmus biomass. Biomass Bioenergy 40:105–111CrossRef González-Fernández C, Sialve B, Bernet N, Steyer JP (2012a) Thermal pretreatment to improve methane production of Scenedesmus biomass. Biomass Bioenergy 40:105–111CrossRef
Zurück zum Zitat González-Fernández C, Sialve B, Bernet N, Steyer JP (2012b) Comparison of ultrasound and thermal pretreatment of Scenedesmus biomass on methane production. Bioresour Technol 110:610–616CrossRef González-Fernández C, Sialve B, Bernet N, Steyer JP (2012b) Comparison of ultrasound and thermal pretreatment of Scenedesmus biomass on methane production. Bioresour Technol 110:610–616CrossRef
Zurück zum Zitat González-Fernández C, Sialve B, Bernet N, Steyer JP (2012c) Impact of microalgae characteristics on their conversion to biofuel. Part II: focus on biomethane production. Biofuels Bioprod Biorefin 6:205–218CrossRef González-Fernández C, Sialve B, Bernet N, Steyer JP (2012c) Impact of microalgae characteristics on their conversion to biofuel. Part II: focus on biomethane production. Biofuels Bioprod Biorefin 6:205–218CrossRef
Zurück zum Zitat González-Fernández C, Sialve B, Bernet N, Steyer JP (2013) Effect of organic loading rate on anaerobic digestion of thermally pretreated Scenedesmus sp. biomass. Bioresour Technol 129:219–223CrossRef González-Fernández C, Sialve B, Bernet N, Steyer JP (2013) Effect of organic loading rate on anaerobic digestion of thermally pretreated Scenedesmus sp. biomass. Bioresour Technol 129:219–223CrossRef
Zurück zum Zitat González-Fernández C, Sialve B, Molinuevo-salces B (2015) Anaerobic digestion of microalgal biomass: challenges, opportunities and research needs. Bioresour Technol 198:896–906CrossRef González-Fernández C, Sialve B, Molinuevo-salces B (2015) Anaerobic digestion of microalgal biomass: challenges, opportunities and research needs. Bioresour Technol 198:896–906CrossRef
Zurück zum Zitat Gouveia L (2011) Microalgae as a feedstock for biofuels. Springer, Berlin, pp 1–69CrossRef Gouveia L (2011) Microalgae as a feedstock for biofuels. Springer, Berlin, pp 1–69CrossRef
Zurück zum Zitat Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36:269–274CrossRef Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36:269–274CrossRef
Zurück zum Zitat Gruber-Brunhumer MR, Jerney J, Zohar E, Nussbaumer M, Hieger C, Bochmann G, Schagerl M, Obbard JP, Fuchs W, Drosg B (2015) Acutodesmus obliquus as a benchmark strain for evaluating methane production from microalgae: influence of different storage and pretreatment methods on biogas yield. Algal Res 12:230–238CrossRef Gruber-Brunhumer MR, Jerney J, Zohar E, Nussbaumer M, Hieger C, Bochmann G, Schagerl M, Obbard JP, Fuchs W, Drosg B (2015) Acutodesmus obliquus as a benchmark strain for evaluating methane production from microalgae: influence of different storage and pretreatment methods on biogas yield. Algal Res 12:230–238CrossRef
Zurück zum Zitat Harun R, Danquah MK (2011) Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochem 46:304–309CrossRef Harun R, Danquah MK (2011) Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochem 46:304–309CrossRef
Zurück zum Zitat Hays SG, Ducat DC (2015) Engineering cyanobacteria as photosynthetic feedstock factories. Photosynth Res 123:285–295CrossRef Hays SG, Ducat DC (2015) Engineering cyanobacteria as photosynthetic feedstock factories. Photosynth Res 123:285–295CrossRef
Zurück zum Zitat Hernández D, Riaño B, Coca M, García-González MC (2015) Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pre-treatments as a previous step for bioethanol production. Chem Eng J 262:939–945CrossRef Hernández D, Riaño B, Coca M, García-González MC (2015) Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pre-treatments as a previous step for bioethanol production. Chem Eng J 262:939–945CrossRef
Zurück zum Zitat Hirano A, Ueda R, Hirayama S, Ogushi Y (1997) CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy 22: 137–142 Hirano A, Ueda R, Hirayama S, Ogushi Y (1997) CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy 22: 137–142
Zurück zum Zitat Ho SH, Li PJ, Liu CC, Chang JS (2013) Bioprocess development on microalgae-based CO2 fixation and bioethanol production using Scenedesmus obliquus CNW-N. Bioresour Technol 145:142–149CrossRef Ho SH, Li PJ, Liu CC, Chang JS (2013) Bioprocess development on microalgae-based CO2 fixation and bioethanol production using Scenedesmus obliquus CNW-N. Bioresour Technol 145:142–149CrossRef
Zurück zum Zitat Ho SH, Ye X, Hasunuma T, Chang JS, Kondo A (2014) Perspectives on engineering strategies for improving biofuel production from microalgae: a critical review. Biotechnol Adv 32:1448–1459CrossRef Ho SH, Ye X, Hasunuma T, Chang JS, Kondo A (2014) Perspectives on engineering strategies for improving biofuel production from microalgae: a critical review. Biotechnol Adv 32:1448–1459CrossRef
Zurück zum Zitat Hoiczyk E, Hansel A (2000) Cyanobacterial cell walls: news from an unusual prokaryotic envelope. J Bacteriol 182:1191–1199CrossRef Hoiczyk E, Hansel A (2000) Cyanobacterial cell walls: news from an unusual prokaryotic envelope. J Bacteriol 182:1191–1199CrossRef
Zurück zum Zitat Hu Q (2003) Environmental effects on cell composition. In: Richmond A (ed) Handbook of microalgal culture. Blackwell Publishing Ltd, Oxford, pp 83–94CrossRef Hu Q (2003) Environmental effects on cell composition. In: Richmond A (ed) Handbook of microalgal culture. Blackwell Publishing Ltd, Oxford, pp 83–94CrossRef
Zurück zum Zitat Kim M, Baek J, Yun Y, Junsim S, Park S, Kim S (2006) Hydrogen production from Chlamydomonas reinhardtii biomass using a two-step conversion process: anaerobic conversion and photosynthetic fermentation. Int J Hydrogen Energy 31:812–816CrossRef Kim M, Baek J, Yun Y, Junsim S, Park S, Kim S (2006) Hydrogen production from Chlamydomonas reinhardtii biomass using a two-step conversion process: anaerobic conversion and photosynthetic fermentation. Int J Hydrogen Energy 31:812–816CrossRef
Zurück zum Zitat Lorente E, Farriol X, Salvadó J (2015) Steam explosion as a fractionation step in biofuel production from microalgae. Fuel Process Technol 131:93–98CrossRef Lorente E, Farriol X, Salvadó J (2015) Steam explosion as a fractionation step in biofuel production from microalgae. Fuel Process Technol 131:93–98CrossRef
Zurück zum Zitat Mahdy A, Mendez L, Ballesteros M, González-Fernández C (2014a) Autohydrolysis and alkaline pretreatment effect on Chlorella vulgaris and Scenedesmus sp. methane production. Energy 78:48–52CrossRef Mahdy A, Mendez L, Ballesteros M, González-Fernández C (2014a) Autohydrolysis and alkaline pretreatment effect on Chlorella vulgaris and Scenedesmus sp. methane production. Energy 78:48–52CrossRef
Zurück zum Zitat Mahdy A, Mendez L, Ballesteros M, González-Fernández C (2014b) Enhanced methane production of Chlorella vulgaris and Chlamydomonas reinhardtii by hydrolytic enzymes addition. Energy Convers Manag 85:551–557CrossRef Mahdy A, Mendez L, Ballesteros M, González-Fernández C (2014b) Enhanced methane production of Chlorella vulgaris and Chlamydomonas reinhardtii by hydrolytic enzymes addition. Energy Convers Manag 85:551–557CrossRef
Zurück zum Zitat Mahdy A, Ballesteros M, González-Fernández C (2016) Enzymatic pretreatment of Chlorella vulgaris for biogas production: influence of urban wastewater as a sole nutrient source on macromolecular profile and biocatalyst efficiency. Bioresour Technol 199:319–325CrossRef Mahdy A, Ballesteros M, González-Fernández C (2016) Enzymatic pretreatment of Chlorella vulgaris for biogas production: influence of urban wastewater as a sole nutrient source on macromolecular profile and biocatalyst efficiency. Bioresour Technol 199:319–325CrossRef
Zurück zum Zitat Maity JP, Bundschuh J, Chen CY, Bhattacharya P (2014) Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: present and future perspectives – a mini review. Energy 78:104–113CrossRef Maity JP, Bundschuh J, Chen CY, Bhattacharya P (2014) Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: present and future perspectives – a mini review. Energy 78:104–113CrossRef
Zurück zum Zitat Markou G, Angelidaki I, Nerantzis E, Georgakakis D (2013) Bioethanol production by carbohydrate-enriched biomass of Arthrospira (Spirulina) platensis. Energies 6:3937–3950CrossRef Markou G, Angelidaki I, Nerantzis E, Georgakakis D (2013) Bioethanol production by carbohydrate-enriched biomass of Arthrospira (Spirulina) platensis. Energies 6:3937–3950CrossRef
Zurück zum Zitat Matsui T, Nishihara A, Ueda C, Ohtsuki M, Ikenaga N, Suzuki T (1997) Liquefaction of microalgae with iron catalyst. Fuel 76:1043–1048CrossRef Matsui T, Nishihara A, Ueda C, Ohtsuki M, Ikenaga N, Suzuki T (1997) Liquefaction of microalgae with iron catalyst. Fuel 76:1043–1048CrossRef
Zurück zum Zitat McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ, Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374:517–521CrossRef McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ, Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374:517–521CrossRef
Zurück zum Zitat Mendez L, Mahdy A, Timmers RA, Ballesteros M, González-Fernández C (2013) Enhancing methane production of Chlorella vulgaris via thermochemical pretreatments. Bioresour Technol 149:136–141CrossRef Mendez L, Mahdy A, Timmers RA, Ballesteros M, González-Fernández C (2013) Enhancing methane production of Chlorella vulgaris via thermochemical pretreatments. Bioresour Technol 149:136–141CrossRef
Zurück zum Zitat Mendez L, Mahdy A, Demuez M, Ballesteros M, González-Fernández C (2014) Effect of high pressure thermal pretreatment on Chlorella vulgaris biomass: organic matter solubilisation and biochemical methane potential. Fuel 117:674–679CrossRef Mendez L, Mahdy A, Demuez M, Ballesteros M, González-Fernández C (2014) Effect of high pressure thermal pretreatment on Chlorella vulgaris biomass: organic matter solubilisation and biochemical methane potential. Fuel 117:674–679CrossRef
Zurück zum Zitat Mendez L, Mahdy A, Ballesteros M, González-Fernández C (2015) Chlorella vulgaris vs cyanobacterial biomasses: comparison in terms of biomass productivity and biogas yield. Energy Convers Manag 92:137–142CrossRef Mendez L, Mahdy A, Ballesteros M, González-Fernández C (2015) Chlorella vulgaris vs cyanobacterial biomasses: comparison in terms of biomass productivity and biogas yield. Energy Convers Manag 92:137–142CrossRef
Zurück zum Zitat Möllers KB, Cannella D, Jørgensen H, Frigaard NU (2014) Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation. Biotechnol Biofuels 7:1–11CrossRef Möllers KB, Cannella D, Jørgensen H, Frigaard NU (2014) Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation. Biotechnol Biofuels 7:1–11CrossRef
Zurück zum Zitat Montalescot V, Rinaldi T, Touchard R, Jubeau S, Frappart M, Jaouen P, Bourseau P, Marchal L (2015) Optimization of bead milling parameters for the cell disruption of microalgae: process modeling and application to Porphyridium cruentum and Nannochloropsis oculata. Bioresour Technol 196:339–346CrossRef Montalescot V, Rinaldi T, Touchard R, Jubeau S, Frappart M, Jaouen P, Bourseau P, Marchal L (2015) Optimization of bead milling parameters for the cell disruption of microalgae: process modeling and application to Porphyridium cruentum and Nannochloropsis oculata. Bioresour Technol 196:339–346CrossRef
Zurück zum Zitat Mussgnug JH, Klassen V, Schlüter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150:51–56CrossRef Mussgnug JH, Klassen V, Schlüter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150:51–56CrossRef
Zurück zum Zitat Nguyen MT, Choi SP, Lee J, Lee JH, Sim SJ (2009) Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. J Microbiol Biotechnol 19(2):161–166CrossRef Nguyen MT, Choi SP, Lee J, Lee JH, Sim SJ (2009) Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. J Microbiol Biotechnol 19(2):161–166CrossRef
Zurück zum Zitat Nobre BP, Villalobos F, Barragán BE, Oliveira AC, Batista AP, Marques PASS, Mendes RL, Sovová H, Palavra AF, Gouveia L (2013) A biorefinery from Nannochloropsis sp. microalga-extraction of oils and pigments. Production of biohydrogen from the leftover biomass. Bioresour Technol 135:128–136CrossRef Nobre BP, Villalobos F, Barragán BE, Oliveira AC, Batista AP, Marques PASS, Mendes RL, Sovová H, Palavra AF, Gouveia L (2013) A biorefinery from Nannochloropsis sp. microalga-extraction of oils and pigments. Production of biohydrogen from the leftover biomass. Bioresour Technol 135:128–136CrossRef
Zurück zum Zitat Nurachman Z, Hartini H, Rahmaniyah WR, Kurnia D, Hidayat R, Prijamboedi B, Suendo V, Ratnaningsih E, Panggabean LMG, Nurbaiti S (2015) Tropical marine Chlorella sp. PP1 as a source of photosynthetic pigments for dye-sensitized solar cells. Algal Res 10:25–32CrossRef Nurachman Z, Hartini H, Rahmaniyah WR, Kurnia D, Hidayat R, Prijamboedi B, Suendo V, Ratnaningsih E, Panggabean LMG, Nurbaiti S (2015) Tropical marine Chlorella sp. PP1 as a source of photosynthetic pigments for dye-sensitized solar cells. Algal Res 10:25–32CrossRef
Zurück zum Zitat Ometto F, Quiroga G, Pšenička P, Whitton R, Jefferson B, Villa R (2014) Impacts of microalgae pre-treatments for improved anaerobic digestion: thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis. Water Res 65:350–361CrossRef Ometto F, Quiroga G, Pšenička P, Whitton R, Jefferson B, Villa R (2014) Impacts of microalgae pre-treatments for improved anaerobic digestion: thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis. Water Res 65:350–361CrossRef
Zurück zum Zitat Passos F, Ferrer I (2015) Influence of hydrothermal pretreatment on microalgal biomass anaerobic digestion and bioenergy production. Water Res 68:364–373CrossRef Passos F, Ferrer I (2015) Influence of hydrothermal pretreatment on microalgal biomass anaerobic digestion and bioenergy production. Water Res 68:364–373CrossRef
Zurück zum Zitat Passos F, García J, Ferrer I (2013a) Impact of low temperature pretreatment on the anaerobic digestion of microalgal biomass. Bioresour Technol 138:79–86CrossRef Passos F, García J, Ferrer I (2013a) Impact of low temperature pretreatment on the anaerobic digestion of microalgal biomass. Bioresour Technol 138:79–86CrossRef
Zurück zum Zitat Passos F, Solé M, García J, Ferrer I (2013b) Biogas production from microalgae grown in wastewater: effect of microwave pretreatment. Appl Energy 108:168–175CrossRef Passos F, Solé M, García J, Ferrer I (2013b) Biogas production from microalgae grown in wastewater: effect of microwave pretreatment. Appl Energy 108:168–175CrossRef
Zurück zum Zitat Passos F, Astals S, Ferrer I (2014a) Anaerobic digestion of microalgal biomass after ultrasound pretreatment. Waste Manag 34:2098–2103CrossRef Passos F, Astals S, Ferrer I (2014a) Anaerobic digestion of microalgal biomass after ultrasound pretreatment. Waste Manag 34:2098–2103CrossRef
Zurück zum Zitat Passos F, Uggetti E, Carrère H, Ferrer I (2014b) Pretreatment of microalgae to improve biogas production: a review. Bioresour Technol 172:403–412CrossRef Passos F, Uggetti E, Carrère H, Ferrer I (2014b) Pretreatment of microalgae to improve biogas production: a review. Bioresour Technol 172:403–412CrossRef
Zurück zum Zitat Passos F, Hernández-Mariné M, García J, Ferrer I (2014c) Long-term anaerobic digestion of microalgae grown in HRAP for wastewater treatment. Effect of microwave pretreatment. Water Res 49:351–359CrossRef Passos F, Hernández-Mariné M, García J, Ferrer I (2014c) Long-term anaerobic digestion of microalgae grown in HRAP for wastewater treatment. Effect of microwave pretreatment. Water Res 49:351–359CrossRef
Zurück zum Zitat Patel B, Guo M, Izadpanah A, Shah N, Hellgardt K (2016) A review on hydrothermal pre-treatment technologies and environmental profiles of algal biomass processing. Bioresour Technol 199:288–299CrossRef Patel B, Guo M, Izadpanah A, Shah N, Hellgardt K (2016) A review on hydrothermal pre-treatment technologies and environmental profiles of algal biomass processing. Bioresour Technol 199:288–299CrossRef
Zurück zum Zitat Posadas E, García-Encina PA, Domínguez A, Díaz I, Becares E, Blanco S, Muñoz R (2014) Enclosed tubular and open algal–bacterial biofilm photobioreactors for carbon and nutrient removal from domestic wastewater. Ecol Eng 67:156–164CrossRef Posadas E, García-Encina PA, Domínguez A, Díaz I, Becares E, Blanco S, Muñoz R (2014) Enclosed tubular and open algal–bacterial biofilm photobioreactors for carbon and nutrient removal from domestic wastewater. Ecol Eng 67:156–164CrossRef
Zurück zum Zitat Rani RU, Kumar SA, Kaliappan S, Yeom IT, Banu JR (2012) Low temperature thermo-chemical pretreatment of dairy waste activated sludge for anaerobic digestion process. Bioresour Technol 103:415–424CrossRef Rani RU, Kumar SA, Kaliappan S, Yeom IT, Banu JR (2012) Low temperature thermo-chemical pretreatment of dairy waste activated sludge for anaerobic digestion process. Bioresour Technol 103:415–424CrossRef
Zurück zum Zitat Razzak SA, Hossain MM, Lucky RA, Bassi AS, de Lasa H (2013) Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing: a review. Renew Sustain Energy Rev 27:622–653CrossRef Razzak SA, Hossain MM, Lucky RA, Bassi AS, de Lasa H (2013) Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing: a review. Renew Sustain Energy Rev 27:622–653CrossRef
Zurück zum Zitat Rodriguez C, Alaswad A, Mooney J, Prescott T, Olab, AG (2015) Pre-treatment techniques used for anaerobic digestion of algae. Fuel Process. Technol. 138: 765–779 Rodriguez C, Alaswad A, Mooney J, Prescott T, Olab, AG (2015) Pre-treatment techniques used for anaerobic digestion of algae. Fuel Process. Technol. 138: 765–779
Zurück zum Zitat Show KY, Lee DJ (2014) Production of biohydrogen from microalgae. In: Pandey A, Lee DJ, Chisti Y, Soccol CR (eds) Biofuels from algae. Elsevier, Amsterdam pp 189–204CrossRef Show KY, Lee DJ (2014) Production of biohydrogen from microalgae. In: Pandey A, Lee DJ, Chisti Y, Soccol CR (eds) Biofuels from algae. Elsevier, Amsterdam pp 189–204CrossRef
Zurück zum Zitat Singh J, Saxena RC (2015) An introduction to microalgae: diversity and significance. In: Se-Kwon K (ed) Handbook of marine microalgae. Elsevier, Amsterdam, pp 11–24CrossRef Singh J, Saxena RC (2015) An introduction to microalgae: diversity and significance. In: Se-Kwon K (ed) Handbook of marine microalgae. Elsevier, Amsterdam, pp 11–24CrossRef
Zurück zum Zitat Takeda H (1996) Cell wall sugars of some Scenedesmus species. Phytochemistry 42:673–675CrossRef Takeda H (1996) Cell wall sugars of some Scenedesmus species. Phytochemistry 42:673–675CrossRef
Zurück zum Zitat Tian C, Li B, Liu Z, Zhang Y, Lu H (2014) Hydrothermal liquefaction for algal biorefinery: a critical review. Renew Sustain Energy Rev 38:933–950CrossRef Tian C, Li B, Liu Z, Zhang Y, Lu H (2014) Hydrothermal liquefaction for algal biorefinery: a critical review. Renew Sustain Energy Rev 38:933–950CrossRef
Zurück zum Zitat Tomás-Pejó E, Alvira P, Ballesteros M, Negro MJ (2011) Pretreatment technologies for lignocellulose-to-bioethanol conversion. In: Pandey A, Larroche C, Ricke SC, Dussap C-G, Gnansounou E (eds) Biofuels. Alternative feedstocks and conversion processes. Elsevier, Oxford, pp 149–176 Tomás-Pejó E, Alvira P, Ballesteros M, Negro MJ (2011) Pretreatment technologies for lignocellulose-to-bioethanol conversion. In: Pandey A, Larroche C, Ricke SC, Dussap C-G, Gnansounou E (eds) Biofuels. Alternative feedstocks and conversion processes. Elsevier, Oxford, pp 149–176
Zurück zum Zitat Toor SS, Rosendahl L, Rudolfi A (2011) Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy 36:2328–2342CrossRef Toor SS, Rosendahl L, Rudolfi A (2011) Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy 36:2328–2342CrossRef
Zurück zum Zitat Wahidin S, Idris A, Shaleh SRM (2014) Rapid biodiesel production using wet microalgae via microwave irradiation. Energy Convers Manag 84:227–233CrossRef Wahidin S, Idris A, Shaleh SRM (2014) Rapid biodiesel production using wet microalgae via microwave irradiation. Energy Convers Manag 84:227–233CrossRef
Zurück zum Zitat Wang J, Evangelou V (1995) Metal tolerance aspects of plant cell walls and vacuole. In: Pessarakli M (ed) Handbook of plant and crop physiology. Marcel Dekker Inc, New York, NY, pp 695–717 Wang J, Evangelou V (1995) Metal tolerance aspects of plant cell walls and vacuole. In: Pessarakli M (ed) Handbook of plant and crop physiology. Marcel Dekker Inc, New York, NY, pp 695–717
Zurück zum Zitat Yanagi M, Watanabe Y, Saiki H (1995) CO2 fixation by Chlorella sp. HA-1 and its utilization. Energy Convers Manag 36:713–716CrossRef Yanagi M, Watanabe Y, Saiki H (1995) CO2 fixation by Chlorella sp. HA-1 and its utilization. Energy Convers Manag 36:713–716CrossRef
Zurück zum Zitat Zhang C, Tang X, Sheng L, Yang X (2016) Enhancing the performance of co-hydrothermal liquefaction for mixed algae strains by the Maillard reaction. Green Chem 18:2542–2553CrossRef Zhang C, Tang X, Sheng L, Yang X (2016) Enhancing the performance of co-hydrothermal liquefaction for mixed algae strains by the Maillard reaction. Green Chem 18:2542–2553CrossRef
Metadaten
Titel
Hydrothermal Processing of Microalgae
verfasst von
Cristina González-Fernández
Lara Méndez
Mercedes Ballesteros
Elia Tomás-Pejó
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-56457-9_21