Skip to main content
Erschienen in: Topics in Catalysis 18-19/2018

14.09.2018 | Original Paper

Hydrothermal Solubilization–Hydrolysis–Dehydration of Cellulose to Glucose and 5-Hydroxymethylfurfural Over Solid Acid Carbon Catalysts

verfasst von: Nikolay V. Gromov, Tatiana B. Medvedeva, Oxana P. Taran, Andrey V. Bukhtiyarov, Cyril Aymonier, Igor P. Prosvirin, Valentin N. Parmon

Erschienen in: Topics in Catalysis | Ausgabe 18-19/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Solid acid catalysts based on graphite-like mesoporous carbon material Sibunit were developed for the one-pot solubilization–hydrolysis–dehydration of cellulose into glucose and 5-hydroxymethylfurfural (5-HMF). The catalysts were produced by treating Sibunit surface with three different procedures to form acidic and sulfo groups on the catalyst surface. The techniques used were: (1) sulfonation by H2SO4 at 80–250 °C, (2) oxidation by wet air or 32 v/v% solution of HNO3, and (3) oxidation-sulfonation what meant additional sulfonating all the oxidized carbons at 200 °C. All the catalysts were characterized by low-temperature N2 adsorption, titration with NaOH, TEM, XPS. Sulfonation of Sibunit was shown to be accompanied by surface oxidation (formation of acidic groups) and the high amount of acidic groups prevented additional sulfonation of the surface. All the Sibunit treatment methods increased the surface acidity in 3–15 times up to 0.14–0.62 mmol g−1 compared to pure carbon (0.042 mmol g−1). The catalysts were tested in the depolymerization of mechanically activated microcrystalline cellulose at 180 °C in pure water. The main products 5-HMF and glucose were produced with the yields in the range of 8–22 wt% and 12–46 wt%, respectively. The maximal yield were achieved over Sibunit sulfonated at 200 °C. An essential difference in the composition of main products obtained with solid acid Sibunit carbon catalysts (glucose, 5-HMF) and soluble in water H2SO4 catalysts (formic and levulinic acids) as well as strong dependence of the reaction kinetics on the morphology of carbon catalysts argue for heterogenious mechanism of cellulose depolymerization over Sibunit.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bhaumik P, Dhepe PL (2016) Solid acid catalyzed synthesis of furans from carbohydrates. Catal Rev 58:36–112 Bhaumik P, Dhepe PL (2016) Solid acid catalyzed synthesis of furans from carbohydrates. Catal Rev 58:36–112
2.
Zurück zum Zitat Murzin D, Salmi T (2012) Catalysis for lignocellulosic biomass processing: methodological aspects. Catal Lett 142:676–689 Murzin D, Salmi T (2012) Catalysis for lignocellulosic biomass processing: methodological aspects. Catal Lett 142:676–689
3.
Zurück zum Zitat van de Vyver S, Geboers J, Jacobs PA, Sels BF (2011) Recent advances in the catalytic conversion of cellulose. ChemCatChem 3:82–94 van de Vyver S, Geboers J, Jacobs PA, Sels BF (2011) Recent advances in the catalytic conversion of cellulose. ChemCatChem 3:82–94
4.
Zurück zum Zitat van Putten R-J, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG (2013) Hydroxymethylfurfural, A versatile platform chemical made from renewable resources. Chem Rev 113:1499–1597PubMed van Putten R-J, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG (2013) Hydroxymethylfurfural, A versatile platform chemical made from renewable resources. Chem Rev 113:1499–1597PubMed
5.
Zurück zum Zitat Besson M, Gallezot P, Pinel C (2014) Conversion of biomass into chemicals over metal catalysts. Chem Rev 114:1827–1870PubMed Besson M, Gallezot P, Pinel C (2014) Conversion of biomass into chemicals over metal catalysts. Chem Rev 114:1827–1870PubMed
6.
Zurück zum Zitat Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41:1538–1558PubMed Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41:1538–1558PubMed
7.
Zurück zum Zitat Mukherjee A, Dumont M-J, Raghavan V (2015) Review: sustainable production of hydroxymethylfurfural and levulinic acid: challenges and opportunities. Biomass Bioenergy 72:143–183 Mukherjee A, Dumont M-J, Raghavan V (2015) Review: sustainable production of hydroxymethylfurfural and levulinic acid: challenges and opportunities. Biomass Bioenergy 72:143–183
8.
Zurück zum Zitat Wataniyakul P, Boonnoun P, Quitain AT, Sasaki M, Kida T, Laosiripojana N, Shotipruk A (2018) Preparation of hydrothermal carbon as catalyst support for conversion of biomass to 5-hydroxymethylfurfural. Catal Commun 104:41–47 Wataniyakul P, Boonnoun P, Quitain AT, Sasaki M, Kida T, Laosiripojana N, Shotipruk A (2018) Preparation of hydrothermal carbon as catalyst support for conversion of biomass to 5-hydroxymethylfurfural. Catal Commun 104:41–47
9.
Zurück zum Zitat Howard J, Rackemann DW, Bartley JP, Samori C, Doherty WOS (2018) Conversion of sugar cane molasses to 5-hydroxymethylfurfural using molasses and bagasse-derived catalysts. ACS Sustain Chem Eng 6:4531–4538 Howard J, Rackemann DW, Bartley JP, Samori C, Doherty WOS (2018) Conversion of sugar cane molasses to 5-hydroxymethylfurfural using molasses and bagasse-derived catalysts. ACS Sustain Chem Eng 6:4531–4538
10.
Zurück zum Zitat Delidovich I, Leonhard K, Palkovits R (2014) Cellulose and hemicellulose valorisation: an integrated challenge of catalysis and reaction engineering. Energy Environ Sci 7:2803–2830 Delidovich I, Leonhard K, Palkovits R (2014) Cellulose and hemicellulose valorisation: an integrated challenge of catalysis and reaction engineering. Energy Environ Sci 7:2803–2830
11.
Zurück zum Zitat Rosatella AA, Simeonov SP, Frade RFM, Afonso CAM (2011) 5-Hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications. Green Chem 13:754–793 Rosatella AA, Simeonov SP, Frade RFM, Afonso CAM (2011) 5-Hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications. Green Chem 13:754–793
12.
Zurück zum Zitat Chheda JN, Huber GW, Dumesic JA (2007) Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew Chem Int Ed 46:7164–7183 Chheda JN, Huber GW, Dumesic JA (2007) Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew Chem Int Ed 46:7164–7183
13.
Zurück zum Zitat Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12:1493–1513 Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12:1493–1513
14.
Zurück zum Zitat Cao L, Yu IKM, Chen SS, Tsang DCW, Wang L, Xiong X, Zhang S, Ok YS, Kwon EE, Song H, Poon CS (2018) Production of 5-hydroxymethylfurfural from starch-rich food waste catalyzed by sulfonated biochar. Bioresour Technol 252:76–82PubMed Cao L, Yu IKM, Chen SS, Tsang DCW, Wang L, Xiong X, Zhang S, Ok YS, Kwon EE, Song H, Poon CS (2018) Production of 5-hydroxymethylfurfural from starch-rich food waste catalyzed by sulfonated biochar. Bioresour Technol 252:76–82PubMed
15.
Zurück zum Zitat Pagán-Torres YJ, Wang T, Gallo JMR, Shanks BH, Dumesic JA (2012) Production of 5-hydroxymethylfurfural from glucose using a combination of lewis and brønsted acid catalysts in water in a biphasic reactor with an alkylphenol. Solvent ACS Catal 2:930–934 Pagán-Torres YJ, Wang T, Gallo JMR, Shanks BH, Dumesic JA (2012) Production of 5-hydroxymethylfurfural from glucose using a combination of lewis and brønsted acid catalysts in water in a biphasic reactor with an alkylphenol. Solvent ACS Catal 2:930–934
16.
Zurück zum Zitat Flèche G (1982) Process for manufacturing 5-hydroxymethylfurfural. USA Patent 4339387 Flèche G (1982) Process for manufacturing 5-hydroxymethylfurfural. USA Patent 4339387
17.
Zurück zum Zitat Sasaki M, Fang Z, Fukushima Y, Adschiri T, Arai K (2000) Dissolution and hydrolysis of cellulose in subcritical and supercritical water. Ind Eng Chem Res 39:2883–2890 Sasaki M, Fang Z, Fukushima Y, Adschiri T, Arai K (2000) Dissolution and hydrolysis of cellulose in subcritical and supercritical water. Ind Eng Chem Res 39:2883–2890
18.
Zurück zum Zitat Zhang YP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824PubMed Zhang YP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824PubMed
19.
Zurück zum Zitat Zhao Y, Lu WJ, Wang HT (2009) Supercritical hydrolysis of cellulose for oligosaccharide production in combined technology. Chem Eng J 150:411–417 Zhao Y, Lu WJ, Wang HT (2009) Supercritical hydrolysis of cellulose for oligosaccharide production in combined technology. Chem Eng J 150:411–417
20.
Zurück zum Zitat Perez S, Mazeau K (2005) Conformation, structures, and morfologies of celluloses. In: Dimitriu S (ed) Polysaccharides. Structural diversity and functional versatility, 2 edn. Marcel Dekker, New York, pp 41–64 Perez S, Mazeau K (2005) Conformation, structures, and morfologies of celluloses. In: Dimitriu S (ed) Polysaccharides. Structural diversity and functional versatility, 2 edn. Marcel Dekker, New York, pp 41–64
22.
Zurück zum Zitat Zakrzewska ME, Bogel-Lukasik E, Bogel-Lukasik R (2011) Ionic liquid-mediated formation of 5-hydroxymethylfurfural: a promising biomass-derived building block. Chem Rev 111:397–417PubMed Zakrzewska ME, Bogel-Lukasik E, Bogel-Lukasik R (2011) Ionic liquid-mediated formation of 5-hydroxymethylfurfural: a promising biomass-derived building block. Chem Rev 111:397–417PubMed
23.
Zurück zum Zitat Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53 Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53
24.
Zurück zum Zitat Gromov NV, Taran OP, Sorokina KN, Mischenko TI, Sivakumar U, Parmon VN (2016) New methods for the one-pot processing of polysaccharide components (cellulose and hemicelluloses) of lignocellulose biomass into valuable products. Part 1: methods for biomass activation. Catal Ind 8:176–786 Gromov NV, Taran OP, Sorokina KN, Mischenko TI, Sivakumar U, Parmon VN (2016) New methods for the one-pot processing of polysaccharide components (cellulose and hemicelluloses) of lignocellulose biomass into valuable products. Part 1: methods for biomass activation. Catal Ind 8:176–786
25.
Zurück zum Zitat Yu Y, Lou X, Wu H (2008) Some recent advances in hydrolysis of biomass in hot-compressed water and its comparisons with other hydrolysis methods. Energy Fuel 22:46–60 Yu Y, Lou X, Wu H (2008) Some recent advances in hydrolysis of biomass in hot-compressed water and its comparisons with other hydrolysis methods. Energy Fuel 22:46–60
26.
Zurück zum Zitat Bobleter O (2005) Hydrothermal degradation and fractionation of saccharides. In: Dimitriu S (ed) Polysaccharides. Structural diversity and functional versatility, 2 edn. Marcel Dekker, New York, pp 893–913 Bobleter O (2005) Hydrothermal degradation and fractionation of saccharides. In: Dimitriu S (ed) Polysaccharides. Structural diversity and functional versatility, 2 edn. Marcel Dekker, New York, pp 893–913
27.
Zurück zum Zitat Su J, Qiu M, Shen F, Qi X (2018) Efficient hydrolysis of cellulose to glucose in water by agricultural residue-derived solid acid catalyst. Cellulose 25:17–22 Su J, Qiu M, Shen F, Qi X (2018) Efficient hydrolysis of cellulose to glucose in water by agricultural residue-derived solid acid catalyst. Cellulose 25:17–22
28.
Zurück zum Zitat Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol 199:42–48PubMed Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol 199:42–48PubMed
29.
Zurück zum Zitat Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686PubMed Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686PubMed
30.
Zurück zum Zitat Singh R, Shukla A, Tiwari S, Srivastava M (2014) A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential. Renew Sustain Energy Rev 32:713–728 Singh R, Shukla A, Tiwari S, Srivastava M (2014) A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential. Renew Sustain Energy Rev 32:713–728
31.
Zurück zum Zitat Murzin DY, Murzina EV, Tokarev A, Shcherban ND, Wärnå J, Salmi T (2015) Arabinogalactan hydrolysis and hydrolytic hydrogenation using functionalized carbon materials. Catal Today 2:169–176 Murzin DY, Murzina EV, Tokarev A, Shcherban ND, Wärnå J, Salmi T (2015) Arabinogalactan hydrolysis and hydrolytic hydrogenation using functionalized carbon materials. Catal Today 2:169–176
32.
Zurück zum Zitat Kim K-H, Ihm S-K (2011) Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: a review. J Hazard Mater 186:16–34PubMed Kim K-H, Ihm S-K (2011) Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: a review. J Hazard Mater 186:16–34PubMed
33.
Zurück zum Zitat Levec J, Pintar A (2007) Catalytic wet-air oxidation processes: a review. Catal Today 124:172–184 Levec J, Pintar A (2007) Catalytic wet-air oxidation processes: a review. Catal Today 124:172–184
34.
Zurück zum Zitat Nakajima K, Okamura M, Kondo JN, Domen K, Tatsumi T, Hayashi S, Hara M (2008) Amorphous carbon bearing sulfonic acid groups in mesoporous silica as a selective catalyst. Chem Mater 21:186–193 Nakajima K, Okamura M, Kondo JN, Domen K, Tatsumi T, Hayashi S, Hara M (2008) Amorphous carbon bearing sulfonic acid groups in mesoporous silica as a selective catalyst. Chem Mater 21:186–193
35.
Zurück zum Zitat Nakajima K, Hara M (2012) Amorphous carbon with SO3H groups as a solid brensted acid catalyst. ACS Catal 2:1296–1304 Nakajima K, Hara M (2012) Amorphous carbon with SO3H groups as a solid brensted acid catalyst. ACS Catal 2:1296–1304
36.
Zurück zum Zitat Liu X-Y, Huang M, Ma H-L, Zhang Z-Q, Gao J-M, Zhu Y-L, Han X-J, Guo X-Y (2010) Preparation of a carbon-based solid acid catalyst by sulfonating activated carbon in a chemical reduction process. Mol J 15:7188–7196 Liu X-Y, Huang M, Ma H-L, Zhang Z-Q, Gao J-M, Zhu Y-L, Han X-J, Guo X-Y (2010) Preparation of a carbon-based solid acid catalyst by sulfonating activated carbon in a chemical reduction process. Mol J 15:7188–7196
37.
Zurück zum Zitat Bhatnagar A, Hogland W, Marques M, Sillanpaa M (2013) An overview of the modification methods of activated carbon for its water treatment applications. Chem Eng J 219:499–511 Bhatnagar A, Hogland W, Marques M, Sillanpaa M (2013) An overview of the modification methods of activated carbon for its water treatment applications. Chem Eng J 219:499–511
38.
Zurück zum Zitat Burgess R, Buono C, Davies PR, Davies RJ, Legge T, Lai A, Lewis R, Morgan DJ, Robinson N, Willock DJ (2015) The functionalisation of graphite surfaces with nitric acid: identification of functional groups and their effects on gold deposition. J Catal 323:10–18 Burgess R, Buono C, Davies PR, Davies RJ, Legge T, Lai A, Lewis R, Morgan DJ, Robinson N, Willock DJ (2015) The functionalisation of graphite surfaces with nitric acid: identification of functional groups and their effects on gold deposition. J Catal 323:10–18
39.
Zurück zum Zitat Taran OP, Polyanskaya EM, Ogorodnikova OL, Descorme C, Besson M, Parmon VN (2011) Sibunit-based catalytic materials for the deep oxidation of organic ecotoxicants in aqueous solutions. II: wet peroxide oxidation over oxidized carbon catalysts. Catal Ind 3:161–169 Taran OP, Polyanskaya EM, Ogorodnikova OL, Descorme C, Besson M, Parmon VN (2011) Sibunit-based catalytic materials for the deep oxidation of organic ecotoxicants in aqueous solutions. II: wet peroxide oxidation over oxidized carbon catalysts. Catal Ind 3:161–169
40.
Zurück zum Zitat Shrotri A, Kobayashi H, Kaiki H, Yabushita M, Fukuoka A (2017) Cellulose hydrolysis using oxidized carbon catalyst in a plug-flow slurry process. Ind Eng Chem Res 56:14471–14478 Shrotri A, Kobayashi H, Kaiki H, Yabushita M, Fukuoka A (2017) Cellulose hydrolysis using oxidized carbon catalyst in a plug-flow slurry process. Ind Eng Chem Res 56:14471–14478
41.
Zurück zum Zitat Taran OP, Descorme C, Polyanskaya EM, Ayusheev AB, Besson M, Parmon VN (2013) Sibunit based catalytic materials for the deep oxidation of organic ecotoxicants in aqueous solutions. III: wet air oxidation of phenol over oxidized carbon and Ru/C catalysts. Catal Ind 5:164–174 Taran OP, Descorme C, Polyanskaya EM, Ayusheev AB, Besson M, Parmon VN (2013) Sibunit based catalytic materials for the deep oxidation of organic ecotoxicants in aqueous solutions. III: wet air oxidation of phenol over oxidized carbon and Ru/C catalysts. Catal Ind 5:164–174
42.
Zurück zum Zitat Onda A, Ochi T, Yanagisawa K (2008) Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chem 10:1033–1037 Onda A, Ochi T, Yanagisawa K (2008) Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chem 10:1033–1037
43.
Zurück zum Zitat Onda A, Ochi T, Yanagisawa K (2009) Hydrolysis of cellulose selectively into glucose over sulfonated activated-carbon catalyst under hydrothermal conditions. Top Catal 52:801–807 Onda A, Ochi T, Yanagisawa K (2009) Hydrolysis of cellulose selectively into glucose over sulfonated activated-carbon catalyst under hydrothermal conditions. Top Catal 52:801–807
44.
Zurück zum Zitat Pang J, Wang A, Zheng M, Zhang T (2010) Hydrolysis of cellulose into glucose over carbons sulfonated at elevated temperatures. Chem Commun 46:6935–6937 Pang J, Wang A, Zheng M, Zhang T (2010) Hydrolysis of cellulose into glucose over carbons sulfonated at elevated temperatures. Chem Commun 46:6935–6937
45.
Zurück zum Zitat Foo GS, Sievers C (2015) Synergistic effect between defect sites and functional groups on the hydrolysis of cellulose over activated carbon. ChemSusChem 8:534–543PubMed Foo GS, Sievers C (2015) Synergistic effect between defect sites and functional groups on the hydrolysis of cellulose over activated carbon. ChemSusChem 8:534–543PubMed
46.
Zurück zum Zitat Guo H, Qi X, Li L, Smith RL Jr (2012) Hydrolysis of cellulose over functionalized glucose-derived carbon catalyst in ionic liquid. Bioresour Technol 116:355–359PubMed Guo H, Qi X, Li L, Smith RL Jr (2012) Hydrolysis of cellulose over functionalized glucose-derived carbon catalyst in ionic liquid. Bioresour Technol 116:355–359PubMed
47.
Zurück zum Zitat Dora S, Bhaskar T, Singh R, Naik Viswanatha D, Adhikari DK (2012) Effective catalytic conversion of cellulose into high yields of methyl glucosides over sulfonated carbon based catalyst. Bioresour Technol 120:318–321PubMed Dora S, Bhaskar T, Singh R, Naik Viswanatha D, Adhikari DK (2012) Effective catalytic conversion of cellulose into high yields of methyl glucosides over sulfonated carbon based catalyst. Bioresour Technol 120:318–321PubMed
48.
Zurück zum Zitat Li S, Gu Z, Bjornson BE, Muthukumarappan A (2013) Biochar based solid acid catalyst hydrolyze biomass. J Environ Chem Eng 1:1174–1181 Li S, Gu Z, Bjornson BE, Muthukumarappan A (2013) Biochar based solid acid catalyst hydrolyze biomass. J Environ Chem Eng 1:1174–1181
49.
Zurück zum Zitat Cao L, Yu IKM, Tsang DCW, Zhang S, Ok YS, Kwon EE, Song H, Poon CS (2018) Phosphoric acid-activated wood biochar for catalytic conversion of starch-rich food waste into glucose and 5-hydroxymethylfurfural. Biores Technol 267:242–248 Cao L, Yu IKM, Tsang DCW, Zhang S, Ok YS, Kwon EE, Song H, Poon CS (2018) Phosphoric acid-activated wood biochar for catalytic conversion of starch-rich food waste into glucose and 5-hydroxymethylfurfural. Biores Technol 267:242–248
50.
Zurück zum Zitat Liu Z, Fu X, Tang S, Cheng Y, Zhu L, Xing L, Wang J, Xue L (2014) Sulfonated magnetic carbon nanotube arrays as effective solid acid catalysts for the hydrolyses of polysaccharides in crop stalks. Catal Commun 56:1–4 Liu Z, Fu X, Tang S, Cheng Y, Zhu L, Xing L, Wang J, Xue L (2014) Sulfonated magnetic carbon nanotube arrays as effective solid acid catalysts for the hydrolyses of polysaccharides in crop stalks. Catal Commun 56:1–4
51.
Zurück zum Zitat Zhao X, Xu J, Wang A, Zhang T (2015) Porous carbon in catalytic transformation of cellulose. Chin J Catal 36:1419–1427 Zhao X, Xu J, Wang A, Zhang T (2015) Porous carbon in catalytic transformation of cellulose. Chin J Catal 36:1419–1427
52.
Zurück zum Zitat Guo F, Fang Z, Xu CC, Smith RL Jr (2012) Solid acid mediated hydrolysis of biomass for producing biofuels. Prog Energy Combust Sci 38:672–690 Guo F, Fang Z, Xu CC, Smith RL Jr (2012) Solid acid mediated hydrolysis of biomass for producing biofuels. Prog Energy Combust Sci 38:672–690
53.
Zurück zum Zitat Toda M, Takagaki A, Okamura M, Kondo JN, Hayashi S, Domen K, Hara M (2005) Green chemistry: biodiesel made with sugar catalyst. Nature 438:178–178PubMed Toda M, Takagaki A, Okamura M, Kondo JN, Hayashi S, Domen K, Hara M (2005) Green chemistry: biodiesel made with sugar catalyst. Nature 438:178–178PubMed
54.
Zurück zum Zitat Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M (2008) Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. J Am Chem Soc 130:12787–12793PubMed Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M (2008) Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. J Am Chem Soc 130:12787–12793PubMed
55.
Zurück zum Zitat Shen S, Wang C, Han Y, Cai B, Li H (2014) Influence of reaction conditions on heterogeneous hydrolysis of cellulose over phenolic residue-derived solid acid. Fuel 134:573–578 Shen S, Wang C, Han Y, Cai B, Li H (2014) Influence of reaction conditions on heterogeneous hydrolysis of cellulose over phenolic residue-derived solid acid. Fuel 134:573–578
56.
Zurück zum Zitat Li Y, Shen S, Wang C, Peng X, Yuan S (2018) The effect of difference in chemical composition between cellulose and lignin on carbon based solid acids applied for cellulose hydrolysis. Cellulose 25:1851–1863 Li Y, Shen S, Wang C, Peng X, Yuan S (2018) The effect of difference in chemical composition between cellulose and lignin on carbon based solid acids applied for cellulose hydrolysis. Cellulose 25:1851–1863
57.
Zurück zum Zitat Fukuhara K, Nakajima K, Kitano M, Kato H, Hayashi S, Hara M (2011) Structure and catalysis of cellulose-derived amorphous carbon bearing SO3H groups. ChemSusChem 4:778–784PubMed Fukuhara K, Nakajima K, Kitano M, Kato H, Hayashi S, Hara M (2011) Structure and catalysis of cellulose-derived amorphous carbon bearing SO3H groups. ChemSusChem 4:778–784PubMed
58.
Zurück zum Zitat Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M (2010) Synthesis and acid catalysis of cellulose-derived carbon-based solid acid. Solid State Sci 12:1029–1034 Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M (2010) Synthesis and acid catalysis of cellulose-derived carbon-based solid acid. Solid State Sci 12:1029–1034
59.
Zurück zum Zitat Kitano M, Yamaguchi D, Suganuma S, Nakajima K, Kato H, Hayashi S, Hara M (2009) Adsorption-enhanced hydrolysis of ОІ-1,4-glucan on graphene-based amorphous carbon bearing SO3H, COOH, and OH groups. Langmuir 25:5068–5075PubMed Kitano M, Yamaguchi D, Suganuma S, Nakajima K, Kato H, Hayashi S, Hara M (2009) Adsorption-enhanced hydrolysis of ОІ-1,4-glucan on graphene-based amorphous carbon bearing SO3H, COOH, and OH groups. Langmuir 25:5068–5075PubMed
60.
Zurück zum Zitat Xiong X, Yu IKM, Chen SS, Tsang DCW, Cao L, Song H, Kwon EE, Ok YS, Zhang S, Poon CS (2018) Sulfonated biochar as acid catalyst for sugar hydrolysis and dehydration. Catal Today 314:52–61 Xiong X, Yu IKM, Chen SS, Tsang DCW, Cao L, Song H, Kwon EE, Ok YS, Zhang S, Poon CS (2018) Sulfonated biochar as acid catalyst for sugar hydrolysis and dehydration. Catal Today 314:52–61
61.
Zurück zum Zitat Van Pelt AH, Simakova OA, Schimming SM, Ewbank JL, Foo GS, Pidko EA, Hensen EJM, Sievers C (2014) Stability of functionalized activated carbon in hot liquid water. Carbon 77:143–154 Van Pelt AH, Simakova OA, Schimming SM, Ewbank JL, Foo GS, Pidko EA, Hensen EJM, Sievers C (2014) Stability of functionalized activated carbon in hot liquid water. Carbon 77:143–154
62.
Zurück zum Zitat Taran OP, Polyanskaya EM, Ogorodnikova OL, Descorme C, Besson M, Parmon VN (2011) Sibunit-based catalytic materials for the deep oxidation of organic ecotoxicants in aqueous solution: I. Surface properties of the oxidized sibunit samples. Catal Ind 2:381–386 Taran OP, Polyanskaya EM, Ogorodnikova OL, Descorme C, Besson M, Parmon VN (2011) Sibunit-based catalytic materials for the deep oxidation of organic ecotoxicants in aqueous solution: I. Surface properties of the oxidized sibunit samples. Catal Ind 2:381–386
63.
Zurück zum Zitat Yabushita M, Kobayashi H, Hasegawa JY, Hara K, Fukuoka A (2014) Entropically favored adsorption of cellulosic molecules onto carbon materials through hydrophobic functionalities. ChemSusChem 7:1443–1450PubMed Yabushita M, Kobayashi H, Hasegawa JY, Hara K, Fukuoka A (2014) Entropically favored adsorption of cellulosic molecules onto carbon materials through hydrophobic functionalities. ChemSusChem 7:1443–1450PubMed
64.
Zurück zum Zitat Surovikin VF, Plaxin GV, Likholobov VA, Tiunova LJ (1990) Porous carbonaceous material. USA Patent 4978649 Surovikin VF, Plaxin GV, Likholobov VA, Tiunova LJ (1990) Porous carbonaceous material. USA Patent 4978649
65.
Zurück zum Zitat Likholobov VA (2001) Catalysis by unique metal ion structures in solid matrices from science to application. In: Centi G, Wichterlová B, Bell AT (eds) NATO science series. II. Mathematics, physics and chemistry. V. 13. Kluwer Academic Publishers, Netherlands, pp 295–306 Likholobov VA (2001) Catalysis by unique metal ion structures in solid matrices from science to application. In: Centi G, Wichterlová B, Bell AT (eds) NATO science series. II. Mathematics, physics and chemistry. V. 13. Kluwer Academic Publishers, Netherlands, pp 295–306
66.
Zurück zum Zitat Gromov NV, Taran OP, Semeykina VS, Danilova IG, Pestunov AV, Parkhomchuk EV, Parmon VN (2017) Solid acidic NbOx/ZrO2 catalysts for transformation of cellulose to glucose and 5-hydroxymethylfurfural in pure hot water. Catal Lett 147:1485–1495 Gromov NV, Taran OP, Semeykina VS, Danilova IG, Pestunov AV, Parkhomchuk EV, Parmon VN (2017) Solid acidic NbOx/ZrO2 catalysts for transformation of cellulose to glucose and 5-hydroxymethylfurfural in pure hot water. Catal Lett 147:1485–1495
67.
Zurück zum Zitat Pestunov AV, Kuzmin AO, Yatsenko DA, Pravdina MK, Taran OP (2015) The mechanical activation of crystal and wooden sawdust cellulose in various fine-grinding mills. J Siberian Fed Univ Chem 8:386–400 Pestunov AV, Kuzmin AO, Yatsenko DA, Pravdina MK, Taran OP (2015) The mechanical activation of crystal and wooden sawdust cellulose in various fine-grinding mills. J Siberian Fed Univ Chem 8:386–400
68.
Zurück zum Zitat Boehm HP (1966) Chemical identification of surface groups. Adv Catal 16:179–274 Boehm HP (1966) Chemical identification of surface groups. Adv Catal 16:179–274
69.
Zurück zum Zitat Toles CA, Marshall WE, Johns MM (1997) Granular activated carbons from nutshells for the uptake of metals organic compounds. Carbon 35:1407–1414 Toles CA, Marshall WE, Johns MM (1997) Granular activated carbons from nutshells for the uptake of metals organic compounds. Carbon 35:1407–1414
70.
Zurück zum Zitat Park S, Baker J, Himmel M, Parilla P, Johnson D (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10PubMedPubMedCentral Park S, Baker J, Himmel M, Parilla P, Johnson D (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10PubMedPubMedCentral
71.
Zurück zum Zitat Likholobov VA (2001) Catalysis by novel carbon-based materials. In: Centi G, Wichterlová B, Bell AT (eds) Catalysis by unique metal ion structures in solid matrices from science to application, vol 13. NATO science series. II. Mathematics, Physics. Kluwer Academic Publishers, Netherlands, pp 295–306 Likholobov VA (2001) Catalysis by novel carbon-based materials. In: Centi G, Wichterlová B, Bell AT (eds) Catalysis by unique metal ion structures in solid matrices from science to application, vol 13. NATO science series. II. Mathematics, Physics. Kluwer Academic Publishers, Netherlands, pp 295–306
72.
Zurück zum Zitat Shitova NB, Dobrynkin NM, Noskov AS, Prosvirin IP, Bukhtiyarov VI, Kochubei DI, Tsyrul’nikov PG, Shlyapin DA (2004) Formation of Ru–M/Sibunit catalysts for ammonia synthesis. Kinet Catal 45:414–421 Shitova NB, Dobrynkin NM, Noskov AS, Prosvirin IP, Bukhtiyarov VI, Kochubei DI, Tsyrul’nikov PG, Shlyapin DA (2004) Formation of Ru–M/Sibunit catalysts for ammonia synthesis. Kinet Catal 45:414–421
73.
Zurück zum Zitat Rodríguez-Castellón E, Jiménez-López A, Eliche-Quesada D (2008) Nickel and cobalt promoted tungsten and molybdenum sulfide mesoporous catalysts for hydrodesulfurization. Fuel 87:1195–1206 Rodríguez-Castellón E, Jiménez-López A, Eliche-Quesada D (2008) Nickel and cobalt promoted tungsten and molybdenum sulfide mesoporous catalysts for hydrodesulfurization. Fuel 87:1195–1206
74.
Zurück zum Zitat Zhuang SX, Yamazaki M, Omata K, Takahashi Y, Yamada M (2001) Catalytic conversion of CO, NO and SO2 on supported sulfide catalysts: II. Catalytic reduction of NO and SO2 by CO. Appl Catal B 31:133–143 Zhuang SX, Yamazaki M, Omata K, Takahashi Y, Yamada M (2001) Catalytic conversion of CO, NO and SO2 on supported sulfide catalysts: II. Catalytic reduction of NO and SO2 by CO. Appl Catal B 31:133–143
75.
Zurück zum Zitat Sanders AFH, de Jong AM, de Beer VHJ, van Veen JAR, Niemantsverdriet JW (1999) Formation of cobalt–molybdenum sulfides in hydrotreating catalysts: a surface science approach. Appl Surf Sci 144–145:380–384 Sanders AFH, de Jong AM, de Beer VHJ, van Veen JAR, Niemantsverdriet JW (1999) Formation of cobalt–molybdenum sulfides in hydrotreating catalysts: a surface science approach. Appl Surf Sci 144–145:380–384
76.
Zurück zum Zitat Okamoto Y, Imanaka T (1988) Interaction chemistry between molybdena and alumina: infrared studies of surface hydroxyl groups and adsorbed carbon dioxide on aluminas modified with molybdate, sulfate, or fluorine anions. J Phys Chem 92:7102–7112 Okamoto Y, Imanaka T (1988) Interaction chemistry between molybdena and alumina: infrared studies of surface hydroxyl groups and adsorbed carbon dioxide on aluminas modified with molybdate, sulfate, or fluorine anions. J Phys Chem 92:7102–7112
77.
Zurück zum Zitat Hibbert DB, Campbell RH (1988) Flue gas desulphurisation: catalytic removal of sulphur dioxide by carbon monoxide on sulphided La1 – xSrxCoO3. II. Reaction of sulphur dioxide and carbon monoxide in a flow system. Appl Catal 41:289–299 Hibbert DB, Campbell RH (1988) Flue gas desulphurisation: catalytic removal of sulphur dioxide by carbon monoxide on sulphided La1 – xSrxCoO3. II. Reaction of sulphur dioxide and carbon monoxide in a flow system. Appl Catal 41:289–299
78.
Zurück zum Zitat Janaun J, Ellis N (2011) Role of silica template in the preparation of sulfonated mesoporous carbon catalysts. Appl Catal A 394:25–31 Janaun J, Ellis N (2011) Role of silica template in the preparation of sulfonated mesoporous carbon catalysts. Appl Catal A 394:25–31
79.
Zurück zum Zitat Takagaki A, Toda M, Okamura M, Kondo JN, Hayashi S, Domen K, Hara M (2006) Esterification of higher fatty acids by a novel strong solid acid. Catal Today 116:157–161 Takagaki A, Toda M, Okamura M, Kondo JN, Hayashi S, Domen K, Hara M (2006) Esterification of higher fatty acids by a novel strong solid acid. Catal Today 116:157–161
80.
Zurück zum Zitat Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Physical Electronics Division, Perkin-Elmer Corporation, Eden Prairie Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Physical Electronics Division, Perkin-Elmer Corporation, Eden Prairie
81.
Zurück zum Zitat Zemlyanov DY, Nagy A, Schlögl R (1998) The reaction of silver with NO/O2. Appl Surf Sci 133:171–183 Zemlyanov DY, Nagy A, Schlögl R (1998) The reaction of silver with NO/O2. Appl Surf Sci 133:171–183
82.
Zurück zum Zitat Motoyuki S (1993) Studies in surface science and catalysis. In: Fundamentals of adsorption, vol 80. Elsevier, Amsterdam Motoyuki S (1993) Studies in surface science and catalysis. In: Fundamentals of adsorption, vol 80. Elsevier, Amsterdam
83.
Zurück zum Zitat Scofield JH (1976) Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J Electron Spectrosc Relat Phenom 8:129–137 Scofield JH (1976) Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J Electron Spectrosc Relat Phenom 8:129–137
84.
Zurück zum Zitat Morrison RT, Boyd RN (1977) Organic chemistry, 2nd edn. Allyn and Bacon Inc., Boston Morrison RT, Boyd RN (1977) Organic chemistry, 2nd edn. Allyn and Bacon Inc., Boston
85.
Zurück zum Zitat Gromov NV, Taran OP, Delidovich IV, Pestunov AV, Rodikova YA, Yatsenko DA, Zhizhina EG, Parmon VN (2016) Hydrolytic oxidation of cellulose to formic acid in the presence of Mo-V-P heteropoly acid catalysts. Catal Today 278:74–81 Gromov NV, Taran OP, Delidovich IV, Pestunov AV, Rodikova YA, Yatsenko DA, Zhizhina EG, Parmon VN (2016) Hydrolytic oxidation of cellulose to formic acid in the presence of Mo-V-P heteropoly acid catalysts. Catal Today 278:74–81
Metadaten
Titel
Hydrothermal Solubilization–Hydrolysis–Dehydration of Cellulose to Glucose and 5-Hydroxymethylfurfural Over Solid Acid Carbon Catalysts
verfasst von
Nikolay V. Gromov
Tatiana B. Medvedeva
Oxana P. Taran
Andrey V. Bukhtiyarov
Cyril Aymonier
Igor P. Prosvirin
Valentin N. Parmon
Publikationsdatum
14.09.2018
Verlag
Springer US
Erschienen in
Topics in Catalysis / Ausgabe 18-19/2018
Print ISSN: 1022-5528
Elektronische ISSN: 1572-9028
DOI
https://doi.org/10.1007/s11244-018-1049-4

Weitere Artikel der Ausgabe 18-19/2018

Topics in Catalysis 18-19/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.