Skip to main content

2018 | OriginalPaper | Buchkapitel

17. Hyper-heuristics

verfasst von : Michael G. Epitropakis, Edmund K. Burke

Erschienen in: Handbook of Heuristics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter presents a literature review of the main advances in the field of hyper-heuristics, since the publication of a survey paper in 2013. The chapter demonstrates the most recent advances in hyper-heuristic foundations, methodologies, theory, and application areas. In addition, a simple illustrative selection hyper-heuristic framework is developed as a case study. This is based on the well-known Iterated Local Search algorithm and is presented to provide a tutorial style introduction to some of the key basic issues. A brief discussion about the implementation process in addition to the decisions that had to be made during the implementation is presented. The framework implements an action selection model that operates on the perturbation stage of the Iterated Local Search algorithm to adaptively select among various low-level perturbation heuristics. The performance and efficiency of the developed framework is evaluated across six well-known real-world problem domains.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
6.
Zurück zum Zitat Adriaensen S, Brys T, Nowé A (2014) Fair-share ILS: a simple state-of-the-art iterated local search hyperheuristic. In: Proceedings of the 2014 conference on genetic and evolutionary computation (GECCO’14). ACM, New York, pp 1303–1310. https://doi.org/10.1145/2576768.2598285 Adriaensen S, Brys T, Nowé A (2014) Fair-share ILS: a simple state-of-the-art iterated local search hyperheuristic. In: Proceedings of the 2014 conference on genetic and evolutionary computation (GECCO’14). ACM, New York, pp 1303–1310. https://​doi.​org/​10.​1145/​2576768.​2598285
7.
Zurück zum Zitat Akar E, Topcuoglu HR, Ermis M (2014) Hyper-heuristics for online UAV path planning under imperfect information. In: Esparcia-Alcázar AI, Mora AM (eds) Applications of evolutionary computation. Lecture notes in computer science. Springer, Berlin/Heidelberg, pp 741–752 Akar E, Topcuoglu HR, Ermis M (2014) Hyper-heuristics for online UAV path planning under imperfect information. In: Esparcia-Alcázar AI, Mora AM (eds) Applications of evolutionary computation. Lecture notes in computer science. Springer, Berlin/Heidelberg, pp 741–752
9.
Zurück zum Zitat Aleti A, Moser I (2013) Entropy-based adaptive range parameter control for evolutionary algorithms. In: Proceedings of the 15th annual conference on genetic and evolutionary computation (GECCO’13). ACM, New York, pp 1501–1508. https://doi.org/10.1145/2463372.2463560 Aleti A, Moser I (2013) Entropy-based adaptive range parameter control for evolutionary algorithms. In: Proceedings of the 15th annual conference on genetic and evolutionary computation (GECCO’13). ACM, New York, pp 1501–1508. https://​doi.​org/​10.​1145/​2463372.​2463560
12.
Zurück zum Zitat Allen J (2014) A framework for hyper-heuristic optimisation of conceptual aircraft structural designs. Doctoral, Durham University Allen J (2014) A framework for hyper-heuristic optimisation of conceptual aircraft structural designs. Doctoral, Durham University
15.
Zurück zum Zitat Anwar K, Khader AT, Al-Betar MA, Awadallah MA (2014) Development on harmony search hyper-heuristic framework for examination timetabling problem. In: Tan Y, Shi Y, Coello CAC (eds) Advances in swarm intelligence. Lecture notes in computer science, vol 8795. Springer International Publishing, Cham, pp 87–95 Anwar K, Khader AT, Al-Betar MA, Awadallah MA (2014) Development on harmony search hyper-heuristic framework for examination timetabling problem. In: Tan Y, Shi Y, Coello CAC (eds) Advances in swarm intelligence. Lecture notes in computer science, vol 8795. Springer International Publishing, Cham, pp 87–95
18.
Zurück zum Zitat Asta S, Özcan E (2014) A tensor-based approach to nurse rostering. In: 10th international conference on the practice and theory of automated timetabling (PATAT 2014), pp 442–445 Asta S, Özcan E (2014) A tensor-based approach to nurse rostering. In: 10th international conference on the practice and theory of automated timetabling (PATAT 2014), pp 442–445
20.
Zurück zum Zitat Asta S, Özcan E, Parkes AJ (2013) Batched mode hyper-heuristics. In: Nicosia G, Pardalos P (eds) Learning and intelligent optimization. Lecture notes in computer science. Springer, Berlin/Heidelberg, pp 404–409 Asta S, Özcan E, Parkes AJ (2013) Batched mode hyper-heuristics. In: Nicosia G, Pardalos P (eds) Learning and intelligent optimization. Lecture notes in computer science. Springer, Berlin/Heidelberg, pp 404–409
21.
Zurück zum Zitat Asta S, Özcan E, Parkes AJ, Etaner-Uyar S A (2013) Generalizing hyper-heuristics via apprenticeship learning. In: Middendorf M, Blum C (eds) Evolutionary computation in combinatorial optimization. Lecture notes in computer science, vol 7832. Springer, Berlin/Heidelberg, pp 169–178 Asta S, Özcan E, Parkes AJ, Etaner-Uyar S A (2013) Generalizing hyper-heuristics via apprenticeship learning. In: Middendorf M, Blum C (eds) Evolutionary computation in combinatorial optimization. Lecture notes in computer science, vol 7832. Springer, Berlin/Heidelberg, pp 169–178
23.
Zurück zum Zitat Bäck T, Fogel DB, Michalewicz Z (eds) (1997) Handbook of evolutionary computation. Oxford University Press, New York Bäck T, Fogel DB, Michalewicz Z (eds) (1997) Handbook of evolutionary computation. Oxford University Press, New York
24.
Zurück zum Zitat Banerjea-Brodeur M (2013) Selection hyper-heuristics for healthcare scheduling. PhD thesis, University of Nottingham Banerjea-Brodeur M (2013) Selection hyper-heuristics for healthcare scheduling. PhD thesis, University of Nottingham
25.
26.
Zurück zum Zitat Bartz-Beielstein T, Lasarczyk C, Preuss M (2010) The sequential parameter optimization toolbox. In: Bartz-Beielstein T, Chiarandini M, Paquete L, Preuss M (eds) Experimental methods for the analysis of optimization algorithms. Springer, Berlin/Heidelberg, pp 337–362, 00031 Bartz-Beielstein T, Lasarczyk C, Preuss M (2010) The sequential parameter optimization toolbox. In: Bartz-Beielstein T, Chiarandini M, Paquete L, Preuss M (eds) Experimental methods for the analysis of optimization algorithms. Springer, Berlin/Heidelberg, pp 337–362, 00031
27.
Zurück zum Zitat Basgalupp MP, Barros RC, Barabasz T (2014) A grammatical evolution based hyper-heuristic for the automatic design of split criteria. In: Proceedings of the 2014 conference on genetic and evolutionary computation (GECCO’14). ACM, New York, pp 1311–1318. https://doi.org/10.1145/2576768.2598327 Basgalupp MP, Barros RC, Barabasz T (2014) A grammatical evolution based hyper-heuristic for the automatic design of split criteria. In: Proceedings of the 2014 conference on genetic and evolutionary computation (GECCO’14). ACM, New York, pp 1311–1318. https://​doi.​org/​10.​1145/​2576768.​2598327
28.
Zurück zum Zitat Battiti R, Protasi M (2001) Reactive local search for the maximum clique problem. Algorithmica 29(4):610–637 Battiti R, Protasi M (2001) Reactive local search for the maximum clique problem. Algorithmica 29(4):610–637
29.
Zurück zum Zitat Battiti R, Brunato M, Mascia F (2009) Reactive search and intelligent optimization. Operations research/computer science interfaces series, vol 45. Springer, Boston, 00000 Battiti R, Brunato M, Mascia F (2009) Reactive search and intelligent optimization. Operations research/computer science interfaces series, vol 45. Springer, Boston, 00000
30.
Zurück zum Zitat Boughaci D, Lassouaoui M (2014) Stochastic hyper-heuristic for the winner determination problem in combinatorial auctions. In: Proceedings of the 6th international conference on management of emergent digital EcoSystems (MEDES’14). ACM, New York, pp 11: 62–11:66. https://doi.org/10.1145/2668260.2668268 Boughaci D, Lassouaoui M (2014) Stochastic hyper-heuristic for the winner determination problem in combinatorial auctions. In: Proceedings of the 6th international conference on management of emergent digital EcoSystems (MEDES’14). ACM, New York, pp 11: 62–11:66. https://​doi.​org/​10.​1145/​2668260.​2668268
32.
Zurück zum Zitat Burke EK, Kendall G, Newall J, Hart E, Ross P, Schulenburg S (2003) Hyper-heuristics: an emerging direction in modern search technology. In: Glover F, Kochenberger GA (eds) Handbook of metaheuristics. International series in operations research & management science, vol 57. Springer, Boston, pp 457–474 Burke EK, Kendall G, Newall J, Hart E, Ross P, Schulenburg S (2003) Hyper-heuristics: an emerging direction in modern search technology. In: Glover F, Kochenberger GA (eds) Handbook of metaheuristics. International series in operations research & management science, vol 57. Springer, Boston, pp 457–474
33.
Zurück zum Zitat Burke EK, Hyde MR, Kendall G, Ochoa G, Özcan E, Woodward JR (2009) Exploring hyper-heuristic methodologies with genetic programming. In: Mumford CL, Jain LC (eds) Computational intelligence. Intelligent systems reference library, vol 1. Springer, Berlin/Heidelberg, pp 177–201 Burke EK, Hyde MR, Kendall G, Ochoa G, Özcan E, Woodward JR (2009) Exploring hyper-heuristic methodologies with genetic programming. In: Mumford CL, Jain LC (eds) Computational intelligence. Intelligent systems reference library, vol 1. Springer, Berlin/Heidelberg, pp 177–201
34.
Zurück zum Zitat Burke EK, Hyde M, Kendall G, Ochoa G, Özcan E, Woodward JR (2010) A classification of hyper-heuristic approaches. In: Gendreau M, Potvin JY (eds) Handbook of metaheuristics. International series in operations research & management science, vol 146. Springer, Boston, pp 449–468 Burke EK, Hyde M, Kendall G, Ochoa G, Özcan E, Woodward JR (2010) A classification of hyper-heuristic approaches. In: Gendreau M, Potvin JY (eds) Handbook of metaheuristics. International series in operations research & management science, vol 146. Springer, Boston, pp 449–468
38.
Zurück zum Zitat Chakhlevitch K, Cowling P (2008) Hyperheuristics: recent developments. In: Cotta C, Sevaux M, Sorensen K (eds) Adaptive and multilevel metaheuristics. Studies in computational intelligence, vol 136. Springer, Berlin/Heidelberg, pp 3–29 Chakhlevitch K, Cowling P (2008) Hyperheuristics: recent developments. In: Cotta C, Sevaux M, Sorensen K (eds) Adaptive and multilevel metaheuristics. Studies in computational intelligence, vol 136. Springer, Berlin/Heidelberg, pp 3–29
39.
Zurück zum Zitat Consoli PA, Minku LL, Yao X (2014) Dynamic selection of evolutionary algorithm operators based on online learning and fitness landscape metrics. In: Dick G, Browne WN, Whigham P, Zhang M, Bui LT, Ishibuchi H, Jin Y, Li X, Shi Y, Singh P, Tan KC, Tang K (eds) Simulated evolution and learning. Lecture notes in computer science, vol 8886. Springer International Publishing, Cham, pp 359–370, 00000 Consoli PA, Minku LL, Yao X (2014) Dynamic selection of evolutionary algorithm operators based on online learning and fitness landscape metrics. In: Dick G, Browne WN, Whigham P, Zhang M, Bui LT, Ishibuchi H, Jin Y, Li X, Shi Y, Singh P, Tan KC, Tang K (eds) Simulated evolution and learning. Lecture notes in computer science, vol 8886. Springer International Publishing, Cham, pp 359–370, 00000
40.
Zurück zum Zitat Cowling P, Kendall G, Soubeiga E (2001) A hyperheuristic approach to scheduling a sales summit. In: Burke EK, Erben W (eds) Practice and theory of automated timetabling III. Lecture notes in computer science, vol 2079. Springer, Berlin/Heidelberg, pp 176–190 Cowling P, Kendall G, Soubeiga E (2001) A hyperheuristic approach to scheduling a sales summit. In: Burke EK, Erben W (eds) Practice and theory of automated timetabling III. Lecture notes in computer science, vol 2079. Springer, Berlin/Heidelberg, pp 176–190
41.
Zurück zum Zitat Crowston WBS (1963) Probabilistic and parametric learning combinations of local job shop scheduling rules. Carnegie Institute of Technology and Graduate School of Industrial Administration, Pittsburgh Crowston WBS (1963) Probabilistic and parametric learning combinations of local job shop scheduling rules. Carnegie Institute of Technology and Graduate School of Industrial Administration, Pittsburgh
43.
Zurück zum Zitat Drake JH, Özcan E, Burke EK (2015) Modified choice function heuristic selection for the multidimensional knapsack problem. In: Sun H, Yang CY, Lin CW, Pan JS, Snasel V, Abraham A (eds) Genetic and evolutionary computing. Advances in intelligent systems and computing, vol 329. Springer International Publishing, Cham, pp 225–234 Drake JH, Özcan E, Burke EK (2015) Modified choice function heuristic selection for the multidimensional knapsack problem. In: Sun H, Yang CY, Lin CW, Pan JS, Snasel V, Abraham A (eds) Genetic and evolutionary computing. Advances in intelligent systems and computing, vol 329. Springer International Publishing, Cham, pp 225–234
44.
Zurück zum Zitat Eiben AE, Smit SK (2011) Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm Evol Comput 1(1):19–31 Eiben AE, Smit SK (2011) Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm Evol Comput 1(1):19–31
45.
Zurück zum Zitat Epitropakis MG, Plagianakos VP, Vrahatis MN (2009) Evolutionary adaptation of the differential evolution control parameters. In: IEEE congress on evolutionary computation (CEC’09), pp 1359–1366 Epitropakis MG, Plagianakos VP, Vrahatis MN (2009) Evolutionary adaptation of the differential evolution control parameters. In: IEEE congress on evolutionary computation (CEC’09), pp 1359–1366
46.
Zurück zum Zitat Epitropakis MG, Tasoulis DK, Pavlidis NG, Plagianakos VP, Vrahatis MN (2012) Tracking differential evolution algorithms: an adaptive approach through multinomial distribution tracking with exponential forgetting. In: Maglogiannis I, Plagianakos V, Vlahavas I (eds) Artificial intelligence: theories and applications. Lecture notes in computer science, vol 7297. Springer, Berlin/Heidelberg, pp 214–222 Epitropakis MG, Tasoulis DK, Pavlidis NG, Plagianakos VP, Vrahatis MN (2012) Tracking differential evolution algorithms: an adaptive approach through multinomial distribution tracking with exponential forgetting. In: Maglogiannis I, Plagianakos V, Vlahavas I (eds) Artificial intelligence: theories and applications. Lecture notes in computer science, vol 7297. Springer, Berlin/Heidelberg, pp 214–222
47.
Zurück zum Zitat Epitropakis MG, Tasoulis DK, Pavlidis NG, Plagianakos VP, Vrahatis MN (2012) Tracking particle swarm optimizers: an adaptive approach through multinomial distribution tracking with exponential forgetting. In: 2012 IEEE congress on evolutionary computation (CEC), pp 1–8 Epitropakis MG, Tasoulis DK, Pavlidis NG, Plagianakos VP, Vrahatis MN (2012) Tracking particle swarm optimizers: an adaptive approach through multinomial distribution tracking with exponential forgetting. In: 2012 IEEE congress on evolutionary computation (CEC), pp 1–8
50.
Zurück zum Zitat Fialho A (2010) Adaptive operator selection for optimization. Ph.D. thesis, Université Paris-Sud XI, Orsay Fialho A (2010) Adaptive operator selection for optimization. Ph.D. thesis, Université Paris-Sud XI, Orsay
52.
Zurück zum Zitat Fisher H, Thompson GL (1963) Probabilistic learning combinations of local job-shop scheduling rules. In: Muth JF, Thompson GL (eds) Industrial scheduling. Prentice-Hall, Englewood Cliffs, pp 225–251 Fisher H, Thompson GL (1963) Probabilistic learning combinations of local job-shop scheduling rules. In: Muth JF, Thompson GL (eds) Industrial scheduling. Prentice-Hall, Englewood Cliffs, pp 225–251
53.
Zurück zum Zitat Gong W, Fialho A, Cai Z (2010) Adaptive strategy selection in differential evolution. In: Proceedings of the 12th annual conference on genetic and evolutionary computation (GECCO’10). ACM, New York, pp 409–416 Gong W, Fialho A, Cai Z (2010) Adaptive strategy selection in differential evolution. In: Proceedings of the 12th annual conference on genetic and evolutionary computation (GECCO’10). ACM, New York, pp 409–416
56.
Zurück zum Zitat Güney IA, Küçük G, Özcan E (2013) Hyper-heuristics for performance optimization of simultaneous multithreaded processors. In: Gelenbe E, Lent R (eds) Information sciences and systems 2013. Lecture notes in electrical engineering, vol 264. Springer International Publishing, Cham, pp 97–106, 00001 Güney IA, Küçük G, Özcan E (2013) Hyper-heuristics for performance optimization of simultaneous multithreaded processors. In: Gelenbe E, Lent R (eds) Information sciences and systems 2013. Lecture notes in electrical engineering, vol 264. Springer International Publishing, Cham, pp 97–106, 00001
57.
Zurück zum Zitat Hart E, Sim K (2014) On the life-long learning capabilities of a NELLI*: a hyper-heuristic optimisation system. In: Bartz-Beielstein T, Branke J, Filipč B, Smith J (eds) Parallel problem solving from nature – PPSN XIII. Lecture notes in computer science, vol 8672. Springer International Publishing, Cham, pp 282–291 Hart E, Sim K (2014) On the life-long learning capabilities of a NELLI*: a hyper-heuristic optimisation system. In: Bartz-Beielstein T, Branke J, Filipč B, Smith J (eds) Parallel problem solving from nature – PPSN XIII. Lecture notes in computer science, vol 8672. Springer International Publishing, Cham, pp 282–291
58.
Zurück zum Zitat Hildebrandt T, Goswami D, Freitag M (2014) Large-scale simulation-based optimization of semiconductor dispatching rules. In: Proceedings of the 2014 winter simulation conference (WSC’14). IEEE Press, Piscataway, pp 2580–2590, 00000 Hildebrandt T, Goswami D, Freitag M (2014) Large-scale simulation-based optimization of semiconductor dispatching rules. In: Proceedings of the 2014 winter simulation conference (WSC’14). IEEE Press, Piscataway, pp 2580–2590, 00000
59.
Zurück zum Zitat Hollander M, Wolfe DA, Chicken E (2013) Nonparametric statistical methods, 3rd edn. Wiley, Hoboken Hollander M, Wolfe DA, Chicken E (2013) Nonparametric statistical methods, 3rd edn. Wiley, Hoboken
60.
Zurück zum Zitat Hoos H, Stützle T (2004) Stochastic local search: foundations & applications. Morgan Kaufmann Publishers Inc., San Francisco, 01275 Hoos H, Stützle T (2004) Stochastic local search: foundations & applications. Morgan Kaufmann Publishers Inc., San Francisco, 01275
61.
Zurück zum Zitat Hutter F, Hoos HH, Leyton-Brown K (2011) Sequential model-based optimization for general algorithm configuration. In: Coello CAC (ed) Learning and intelligent optimization. Lecture notes in computer science, vol 6683. Springer, Berlin/Heidelberg, pp 507–523, 00149 Hutter F, Hoos HH, Leyton-Brown K (2011) Sequential model-based optimization for general algorithm configuration. In: Coello CAC (ed) Learning and intelligent optimization. Lecture notes in computer science, vol 6683. Springer, Berlin/Heidelberg, pp 507–523, 00149
64.
65.
Zurück zum Zitat Karafotias G, Eiben E, Hoogendoorn M (2014) Generic parameter control with reinforcement learning. In: Genetic and evolutionary computation conference (GECCO’14), Vancouver, 12–16 July 2014, pp 1319–1326 Karafotias G, Eiben E, Hoogendoorn M (2014) Generic parameter control with reinforcement learning. In: Genetic and evolutionary computation conference (GECCO’14), Vancouver, 12–16 July 2014, pp 1319–1326
66.
Zurück zum Zitat Karafotias G, Hoogendoorn M, Eiben A (2014) Parameter control in evolutionary algorithms: trends and challenges. IEEE Trans Evol Comput PP(99):1–1 Karafotias G, Hoogendoorn M, Eiben A (2014) Parameter control in evolutionary algorithms: trends and challenges. IEEE Trans Evol Comput PP(99):1–1
73.
Zurück zum Zitat Lassouaoui M, Boughaci D (2014) A choice function hyper-heuristic for the winner determination problem. In: Terrazas G, Otero FEB, Masegosa AD (eds) Nature inspired cooperative strategies for optimization (NICSO 2013). Studies in computational intelligence, vol 512. Springer International Publishing, Cham, pp 303–314 Lassouaoui M, Boughaci D (2014) A choice function hyper-heuristic for the winner determination problem. In: Terrazas G, Otero FEB, Masegosa AD (eds) Nature inspired cooperative strategies for optimization (NICSO 2013). Studies in computational intelligence, vol 512. Springer International Publishing, Cham, pp 303–314
74.
Zurück zum Zitat Lehre PK, Özcan E (2013) A runtime analysis of simple hyper-heuristics: to mix or not to mix operators. In: Proceedings of the twelfth workshop on foundations of genetic algorithms XII (FOGA XII’13). ACM, New York, pp 97–104. https://doi.org/10.1145/2460239.2460249, 00008 Lehre PK, Özcan E (2013) A runtime analysis of simple hyper-heuristics: to mix or not to mix operators. In: Proceedings of the twelfth workshop on foundations of genetic algorithms XII (FOGA XII’13). ACM, New York, pp 97–104. https://​doi.​org/​10.​1145/​2460239.​2460249, 00008
77.
Zurück zum Zitat Li S (2013) Hyper-heuristic cooperation based approach for bus driver scheduling. Ph.D. thesis, Université de Technologie de Belfort-Montbeliard Li S (2013) Hyper-heuristic cooperation based approach for bus driver scheduling. Ph.D. thesis, Université de Technologie de Belfort-Montbeliard
79.
Zurück zum Zitat Lobo F, Lima C, Michalewicz Z (eds) (2007) Parameter setting in evolutionary algorithms. Studies in computational intelligence, vol 54. Springer, Berlin/Heidelberg Lobo F, Lima C, Michalewicz Z (eds) (2007) Parameter setting in evolutionary algorithms. Studies in computational intelligence, vol 54. Springer, Berlin/Heidelberg
81.
Zurück zum Zitat López-Ibáñez M, Dubois-Lacoste J, Stützle T, Birattari M (2011) The irace package, iterated race for automatic algorithm configuration. Technical report. TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles López-Ibáñez M, Dubois-Lacoste J, Stützle T, Birattari M (2011) The irace package, iterated race for automatic algorithm configuration. Technical report. TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles
82.
Zurück zum Zitat Lourenço HR, Martin O, Stützle T (2003) Iterated local search, handbook of meta-heuristics. Springer, Berlin/Heidelberg Lourenço HR, Martin O, Stützle T (2003) Iterated local search, handbook of meta-heuristics. Springer, Berlin/Heidelberg
85.
Zurück zum Zitat Marmion ME, Mascia F, López-Ibáñez M, Stützle T (2013) Automatic design of hybrid stochastic local search algorithms. In: Blesa MJ, Blum C, Festa P, Roli A, Sampels M (eds) Hybrid metaheuristics. Lecture notes in computer science, vol 7919. Springer, Berlin/Heidelberg, pp 144–158 Marmion ME, Mascia F, López-Ibáñez M, Stützle T (2013) Automatic design of hybrid stochastic local search algorithms. In: Blesa MJ, Blum C, Festa P, Roli A, Sampels M (eds) Hybrid metaheuristics. Lecture notes in computer science, vol 7919. Springer, Berlin/Heidelberg, pp 144–158
86.
Zurück zum Zitat Marshall RJ, Johnston M, Zhang M (2014) A comparison between two evolutionary hyper-heuristics for combinatorial optimisation. In: Dick G, Browne WN, Whigham P, Zhang M, Bui LT, Ishibuchi H, Jin Y, Li X, Shi Y, Singh P, Tan KC, Tang K (eds) Simulated evolution and learning, Lecture notes in computer science, vol 8886. Springer International Publishing, Cham, pp 618–630 Marshall RJ, Johnston M, Zhang M (2014) A comparison between two evolutionary hyper-heuristics for combinatorial optimisation. In: Dick G, Browne WN, Whigham P, Zhang M, Bui LT, Ishibuchi H, Jin Y, Li X, Shi Y, Singh P, Tan KC, Tang K (eds) Simulated evolution and learning, Lecture notes in computer science, vol 8886. Springer International Publishing, Cham, pp 618–630
87.
Zurück zum Zitat Marshall RJ, Johnston M, Zhang M (2014) Developing a hyper-heuristic using grammatical evolution and the capacitated vehicle routing problem. In: Dick G, Browne WN, Whigham P, Zhang M, Bui LT, Ishibuchi H, Jin Y, Li X, Shi Y, Singh P, Tan KC, Tang K (eds) Simulated evolution and learning, Lecture notes in computer science, vol 8886. Springer International Publishing, Cham, pp 668–679 Marshall RJ, Johnston M, Zhang M (2014) Developing a hyper-heuristic using grammatical evolution and the capacitated vehicle routing problem. In: Dick G, Browne WN, Whigham P, Zhang M, Bui LT, Ishibuchi H, Jin Y, Li X, Shi Y, Singh P, Tan KC, Tang K (eds) Simulated evolution and learning, Lecture notes in computer science, vol 8886. Springer International Publishing, Cham, pp 668–679
88.
Zurück zum Zitat Marshall RJ, Johnston M, Zhang M (2014) Hyper-heuristics, grammatical evolution and the capacitated vehicle routing problem. In: Proceedings of the 2014 conference companion on genetic and evolutionary computation companion (GECCOComp’14). ACM, New York, pp 71–72. https://doi.org/10.1145/2598394.2598407 Marshall RJ, Johnston M, Zhang M (2014) Hyper-heuristics, grammatical evolution and the capacitated vehicle routing problem. In: Proceedings of the 2014 conference companion on genetic and evolutionary computation companion (GECCOComp’14). ACM, New York, pp 71–72. https://​doi.​org/​10.​1145/​2598394.​2598407
91.
Zurück zum Zitat McClymont K, Keedwell EC, Savić D, Randall-Smith M (2014) Automated construction of evolutionary algorithm operators for the bi-objective water distribution network design problem using a genetic programming based hyper-heuristic approach. J Hydroinf 16(2):302. https://doi.org/10.2166/hydro.2013.226, 00001 McClymont K, Keedwell EC, Savić D, Randall-Smith M (2014) Automated construction of evolutionary algorithm operators for the bi-objective water distribution network design problem using a genetic programming based hyper-heuristic approach. J Hydroinf 16(2):302. https://​doi.​org/​10.​2166/​hydro.​2013.​226, 00001
93.
Zurück zum Zitat Misir M, Lau HC (2014) Diversity-oriented bi-objective hyper-heuristics for patrol scheduling. In: 10th international conference on the practice and theory of automated timetabling (PATAT 2014) Misir M, Lau HC (2014) Diversity-oriented bi-objective hyper-heuristics for patrol scheduling. In: 10th international conference on the practice and theory of automated timetabling (PATAT 2014)
97.
Zurück zum Zitat Ochoa G, Burke EK (2014) Hyperils: an effective iterated local search hyper-heuristic for combinatorial optimisation. In: 10th international conference on the practice and theory of automated timetabling (PATAT 2014) Ochoa G, Burke EK (2014) Hyperils: an effective iterated local search hyper-heuristic for combinatorial optimisation. In: 10th international conference on the practice and theory of automated timetabling (PATAT 2014)
98.
Zurück zum Zitat Ochoa G, Hyde M, Curtois T, Vazquez-Rodriguez JA, Walker J, Gendreau M, Kendall G, McCollum B, Parkes AJ, Petrovic S, Burke EK (2012) HyFlex: a benchmark framework for cross-domain heuristic search. In: Hao JK, Middendorf M (eds) Evolutionary computation in combinatorial optimization. Lecture notes in computer science, vol 7245. Springer, Berlin/Heidelberg, pp 136–147 Ochoa G, Hyde M, Curtois T, Vazquez-Rodriguez JA, Walker J, Gendreau M, Kendall G, McCollum B, Parkes AJ, Petrovic S, Burke EK (2012) HyFlex: a benchmark framework for cross-domain heuristic search. In: Hao JK, Middendorf M (eds) Evolutionary computation in combinatorial optimization. Lecture notes in computer science, vol 7245. Springer, Berlin/Heidelberg, pp 136–147
101.
Zurück zum Zitat Park J, Nguyen S, Johnston M, Zhang M (2013) Evolving stochastic dispatching rules for order acceptance and scheduling via genetic programming. In: Cranefield S, Nayak A (eds) AI 2013: advances in artificial intelligence. Lecture notes in computer science, vol 8272. Springer International Publishing, Berlin, pp 478–489, 00001 Park J, Nguyen S, Johnston M, Zhang M (2013) Evolving stochastic dispatching rules for order acceptance and scheduling via genetic programming. In: Cranefield S, Nayak A (eds) AI 2013: advances in artificial intelligence. Lecture notes in computer science, vol 8272. Springer International Publishing, Berlin, pp 478–489, 00001
103.
Zurück zum Zitat Poli R, Graff M (2009) There is a free lunch for hyper-heuristics, genetic programming and computer scientists. Springer, Berlin/Heidelberg, pp 195–207 Poli R, Graff M (2009) There is a free lunch for hyper-heuristics, genetic programming and computer scientists. Springer, Berlin/Heidelberg, pp 195–207
106.
Zurück zum Zitat Ross P (2005) Hyper-heuristics. In: Burke EK, Kendall G (eds) Search methodologies, 1st edn. Springer, New York, pp 529–556 Ross P (2005) Hyper-heuristics. In: Burke EK, Kendall G (eds) Search methodologies, 1st edn. Springer, New York, pp 529–556
107.
Zurück zum Zitat Ross P (2014) Hyper-heuristics. In: Burke EK, Kendall G (eds) Search methodologies, 2nd edn. Springer, New York, pp 611–638 Ross P (2014) Hyper-heuristics. In: Burke EK, Kendall G (eds) Search methodologies, 2nd edn. Springer, New York, pp 611–638
108.
109.
Zurück zum Zitat Sá AGCd, Pappa GL (2014) A hyper-heuristic evolutionary algorithm for learning Bayesian network classifiers. In: Bazzan ALC, Pichara K (eds) Advances in artificial intelligence – IBERAMIA 2014. Lecture notes in computer science. Springer International Publishing, Cham, pp 430–442 Sá AGCd, Pappa GL (2014) A hyper-heuristic evolutionary algorithm for learning Bayesian network classifiers. In: Bazzan ALC, Pichara K (eds) Advances in artificial intelligence – IBERAMIA 2014. Lecture notes in computer science. Springer International Publishing, Cham, pp 430–442
114.
Zurück zum Zitat Salcedo-Sanz S, Jiménez-Fernández S, Matías-Román JM, Portilla-Figueras JA (2014) An educational software tool to teach hyper-heuristics to engineering students based on the Bubble breaker puzzle. Comput Appl Eng Educ n/a–n/a. https://doi.org/10.1002/cae.21597, 00000 Salcedo-Sanz S, Jiménez-Fernández S, Matías-Román JM, Portilla-Figueras JA (2014) An educational software tool to teach hyper-heuristics to engineering students based on the Bubble breaker puzzle. Comput Appl Eng Educ n/a–n/a. https://​doi.​org/​10.​1002/​cae.​21597, 00000
120.
123.
Zurück zum Zitat Smit SK, Eiben AE (2009) Comparing parameter tuning methods for evolutionary algorithms. In: IEEE congress on evolutionary computation (CEC’09), pp 399–406 Smit SK, Eiben AE (2009) Comparing parameter tuning methods for evolutionary algorithms. In: IEEE congress on evolutionary computation (CEC’09), pp 399–406
124.
Zurück zum Zitat Soria Alcaraz JA, Ochoa G, Carpio M, Puga H (2014) Evolvability metrics in adaptive operator selection. In: Proceedings of the 2014 conference on genetic and evolutionary computation (GECCO’14). ACM, New York, pp 1327–1334. https://doi.org/10.1145/2576768.2598220, 00001 Soria Alcaraz JA, Ochoa G, Carpio M, Puga H (2014) Evolvability metrics in adaptive operator selection. In: Proceedings of the 2014 conference on genetic and evolutionary computation (GECCO’14). ACM, New York, pp 1327–1334. https://​doi.​org/​10.​1145/​2576768.​2598220, 00001
127.
Zurück zum Zitat Sutton RS, Barto AG (1998) Introduction to reinforcement learning, 1st edn. MIT Press, Cambridge, 02767 Sutton RS, Barto AG (1998) Introduction to reinforcement learning, 1st edn. MIT Press, Cambridge, 02767
130.
Zurück zum Zitat Thierens D (2005) An adaptive pursuit strategy for allocating operator probabilities. In: Proceedings of the 7th annual conference on genetic and evolutionary computation (GECCO’05). ACM, New York, pp 1539–1546 Thierens D (2005) An adaptive pursuit strategy for allocating operator probabilities. In: Proceedings of the 7th annual conference on genetic and evolutionary computation (GECCO’05). ACM, New York, pp 1539–1546
131.
Zurück zum Zitat Thierens D (2007) Adaptive strategies for operator allocation. In: Lobo F, Lima C, Michalewicz Z (eds) Parameter setting in evolutionary algorithms. Studies in computational intelligence, vol 54. Springer, Berlin/Heidelberg, pp 77–90, 00042 Thierens D (2007) Adaptive strategies for operator allocation. In: Lobo F, Lima C, Michalewicz Z (eds) Parameter setting in evolutionary algorithms. Studies in computational intelligence, vol 54. Springer, Berlin/Heidelberg, pp 77–90, 00042
Metadaten
Titel
Hyper-heuristics
verfasst von
Michael G. Epitropakis
Edmund K. Burke
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-07124-4_32