Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Journal of Dynamical and Control Systems 4/2016

02.12.2015

Hyperbolic Chain Control Sets on Flag Manifolds

verfasst von: A. Da Silva, C. Kawan

Erschienen in: Journal of Dynamical and Control Systems | Ausgabe 4/2016

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

In this paper, we characterize the hyperbolic chain control sets of a right-invariant control system on a flag manifold of a real semisimple Lie group. Moreover, we provide a formula for the invariance entropy of such sets, applying a recently established result that holds in a more general setting.
Fußnoten
1
In [21], it is falsely claimed that N +(Θ) centralizes \(\mathfrak {n}^{-}_{\Theta }\), which in general is not true.
 
Literatur
1.
Zurück zum Zitat Alves LA, San Martin LAB. Multiplicative ergodic theorem on flag bundles of semi-simple Lie groups. Discrete Contin Dyn Syst 2013;33(4):1247–1273. MathSciNetMATH Alves LA, San Martin LAB. Multiplicative ergodic theorem on flag bundles of semi-simple Lie groups. Discrete Contin Dyn Syst 2013;33(4):1247–1273. MathSciNetMATH
4.
Zurück zum Zitat Braga Barros CJ, San Martin LAB. Chain transitive sets for flows on flag bundles. Forum Math 2007;19(1):19–60. MathSciNetMATH Braga Barros CJ, San Martin LAB. Chain transitive sets for flows on flag bundles. Forum Math 2007;19(1):19–60. MathSciNetMATH
5.
7.
8.
Zurück zum Zitat Da Silva A. 2014. Invariance entropy for control systems on Lie groups and homogeneous spaces. Doctoral thesis, University of Augsburg and University of Campinas. Da Silva A. 2014. Invariance entropy for control systems on Lie groups and homogeneous spaces. Doctoral thesis, University of Augsburg and University of Campinas.
10.
Zurück zum Zitat Hasselblatt B. 2002. Hyperbolic dynamical systems. Handbook of dynamical systems, Vol. 1A. North-Holland, Amsterdam; p. 239–319. Hasselblatt B. 2002. Hyperbolic dynamical systems. Handbook of dynamical systems, Vol. 1A. North-Holland, Amsterdam; p. 239–319.
12.
13.
Zurück zum Zitat Duistermaat JJ, Kolk JAC, Varadarajan V S. Functions, flows and oscillatory integrals on flag manifolds and conjugacy classes in real semisimple Lie groups. Compositio Math 1983;49(3):309–398. MathSciNetMATH Duistermaat JJ, Kolk JAC, Varadarajan V S. Functions, flows and oscillatory integrals on flag manifolds and conjugacy classes in real semisimple Lie groups. Compositio Math 1983;49(3):309–398. MathSciNetMATH
14.
Zurück zum Zitat Helgason S. Differential geometry, Lie groups, and symmetric spaces. New York–London: Academic Press; 1978. MATH Helgason S. Differential geometry, Lie groups, and symmetric spaces. New York–London: Academic Press; 1978. MATH
15.
Zurück zum Zitat Kawan C. Invariance entropy for deterministic control systems – an introduction. In: Lecture Notes in Mathematics 2089. Berlin: Springer; 2013. CrossRefMATH Kawan C. Invariance entropy for deterministic control systems – an introduction. In: Lecture Notes in Mathematics 2089. Berlin: Springer; 2013. CrossRefMATH
16.
Zurück zum Zitat Knapp A W. Lie groups beyond an introduction. 2nd ed. In: Progress in Mathematics, 140. Boston: Birkhäuser; 2002. Knapp A W. Lie groups beyond an introduction. 2nd ed. In: Progress in Mathematics, 140. Boston: Birkhäuser; 2002.
17.
Zurück zum Zitat Nair GN, Evans RJ, Mareels IMY, Moran W. Topological feedback entropy and nonlinear stabilization. IEEE Trans Automat Control 2004;49(9):1585–1597. MathSciNetCrossRef Nair GN, Evans RJ, Mareels IMY, Moran W. Topological feedback entropy and nonlinear stabilization. IEEE Trans Automat Control 2004;49(9):1585–1597. MathSciNetCrossRef
20.
Zurück zum Zitat San Martin LAB. Order and domains of attraction of control sets in flag manifolds. J Lie Theory 1998;8(2):335–350. MathSciNetMATH San Martin LAB. Order and domains of attraction of control sets in flag manifolds. J Lie Theory 1998;8(2):335–350. MathSciNetMATH
21.
23.
Zurück zum Zitat Savkin AV. Analysis and synthesis of networked control systems: topological entropy, observability, robustness and optimal control. Automatica J IFAC 2006;42(1): 51–62. MathSciNetCrossRefMATH Savkin AV. Analysis and synthesis of networked control systems: topological entropy, observability, robustness and optimal control. Automatica J IFAC 2006;42(1): 51–62. MathSciNetCrossRefMATH
24.
Zurück zum Zitat Warner G. Harmonic analysis on semi-simple Lie groups. I. New York–Heidelberg: Springer; 1972. CrossRefMATH Warner G. Harmonic analysis on semi-simple Lie groups. I. New York–Heidelberg: Springer; 1972. CrossRefMATH
Metadaten
Titel
Hyperbolic Chain Control Sets on Flag Manifolds
verfasst von
A. Da Silva
C. Kawan
Publikationsdatum
02.12.2015
Verlag
Springer US
Erschienen in
Journal of Dynamical and Control Systems / Ausgabe 4/2016
Print ISSN: 1079-2724
Elektronische ISSN: 1573-8698
DOI
https://doi.org/10.1007/s10883-015-9308-1

Weitere Artikel der Ausgabe 4/2016

Journal of Dynamical and Control Systems 4/2016 Zur Ausgabe

Premium Partner

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.