Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

23.10.2019 | Methodologies and Application | Ausgabe 10/2020

Soft Computing 10/2020

Hyperparameter optimization in CNN for learning-centered emotion recognition for intelligent tutoring systems

Zeitschrift:
Soft Computing > Ausgabe 10/2020
Autoren:
Ramon Zatarain Cabada, Hector Rodriguez Rangel, Maria Lucia Barron Estrada, Hector Manuel Cardenas Lopez
Wichtige Hinweise
Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

An intelligent tutoring system is used as an efficient self-learning tutor, where decisions are based on the affective state of the user. These detected emotions are what experts call basic emotions and the best-known recognition technique is the recognition of facial expressions. A convolutional neural network (CNN) can be used to identify emotions through facial gestures with very high precision. One problem with convolutional networks, however, is the high number of hyperparameters to define, which can range from a hundred to a thousand. This problem is usually solved by an expert experience combined with trial and error optimization. In this work, we propose a methodology using genetic algorithms for the optimization of hyperparameters of a CNN, used to identify the affective state of a person. In addition, we present the optimized network embedded into an intelligent tutoring system running on a mobile phone. The training process of the CNN was carried out on a PC with a GPU and the trained neural network was embedded into a mobile environment. The results show an improvement of 8% (from 74 to 82%) with genetic algorithms compared to a previous work that utilized a trial and error method.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 10/2020

Soft Computing 10/2020 Zur Ausgabe

Premium Partner

    Bildnachweise