Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

20.02.2018 | Ausgabe 4/2018

Wireless Personal Communications 4/2018

Hyperspectral Data Feature Extraction Using Deep Learning Hybrid Model

Zeitschrift:
Wireless Personal Communications > Ausgabe 4/2018
Autoren:
Xinhua Jiang, Heru Xue, Lina Zhang, Xiaojing Gao, Yanqing Zhou, Jie Bai

Abstract

The original hyperspectral data served as the initial features has the characteristics of high dimension and redundancy, which is not suitable for the subsequent analysis, so extracting feature information is needed. The deep learning model has a strong ability in feature learning, but if the model has too many layers which will lead to the original information loss in the process of layer-by-layer feature learning and reduce the subsequent classification accuracy. To solve this problem, the paper proposed a deep learning model of hybrid structure with the contractive autoencoder and restricted boltzmann machine to extract the hyperspectral data feature information. First, through pre-processing the spectral data, the 2d spectrum data is converted into a one dimensional vector. Then, a hybrid model is constructed for unsupervised training and supervised learning for the hyperspectral data, and features are extracted from bottom to top gradually according to the hybrid model. Finally, the SVM classifier is adopted to enhance the classification ability of spectral data. The paper uses the hybrid model proposed to test for extracting features with two sets of AVIRIS data and compares with PCA and GCA methods. The experiment results show that the feature extraction algorithm based on hybrid depth model can get the better features, and have strong distinguish performance, and can get better classification accuracy by the SVM algorithm.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​​​​​​​​

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 4/2018

Wireless Personal Communications 4/2018 Zur Ausgabe