Skip to main content

2020 | OriginalPaper | Buchkapitel

Hyperspectral Image Classification via Hierarchical Features Adaptive Fusion Network

verfasst von : Zehui Sun, Qin Xu, Fenglei Li, Yiming Mei, Bin Luo

Erschienen in: Advances in Brain Inspired Cognitive Systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recently, convolutional neural networks have attracted much attention due to its good performance in hyperspectral image classification. However, excessively increasing the depth of the network will lead to overfitting and vanishing gradient. Besides, previous networks rarely consider the related information among different convolution layers. In this paper we propose a hierarchical deep features adaptive fusion network (FAFNet) to address the above two problems. On the one hand, we use dense connectivity to overcome vanishing gradient and overfitting. On the other hand, we adaptively fuse different convolution layers by the learned weights which utilizing softmax to calculate. Experimental results on two well-known datasets demonstrate the excellent performance of the proposed method compared with other state-of-the-art methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ren, J., Zabalza, J., et al.: Effective feature extraction and data reduction with hyperspectral imaging in remote sensing. IEEE Sig. Process. Mag. 31(4), 149–154 (2014)CrossRef Ren, J., Zabalza, J., et al.: Effective feature extraction and data reduction with hyperspectral imaging in remote sensing. IEEE Sig. Process. Mag. 31(4), 149–154 (2014)CrossRef
2.
Zurück zum Zitat Zabalza, J., Ren, J., et al.: Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging. Neurocomputing 185, 1–10 (2016)CrossRef Zabalza, J., Ren, J., et al.: Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging. Neurocomputing 185, 1–10 (2016)CrossRef
3.
Zurück zum Zitat Bioucas-Dias, J.M., et al.: Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Rem. Sens. Mag. 1(2), 6–36 (2013)CrossRef Bioucas-Dias, J.M., et al.: Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Rem. Sens. Mag. 1(2), 6–36 (2013)CrossRef
4.
Zurück zum Zitat Li, W., Wu, G., Du, Q.: Transferred deep learning for anomaly detection in hyperspectral imagery. IEEE Geosci. Rem. Sens. Lett. 14(5), 597–601 (2017)CrossRef Li, W., Wu, G., Du, Q.: Transferred deep learning for anomaly detection in hyperspectral imagery. IEEE Geosci. Rem. Sens. Lett. 14(5), 597–601 (2017)CrossRef
5.
Zurück zum Zitat Zhang, Y., Du, B., Zhang, L.: A sparse representation-based binary hypothesis model for target detection in hyperspectral images. IEEE Trans. Geosci. Rem. Sens. 53(3), 1346–1354 (2015)CrossRef Zhang, Y., Du, B., Zhang, L.: A sparse representation-based binary hypothesis model for target detection in hyperspectral images. IEEE Trans. Geosci. Rem. Sens. 53(3), 1346–1354 (2015)CrossRef
6.
Zurück zum Zitat Zhang, L., Tao, D., Huang, X., Du, B.: Hyperspectral remote sensing image subpixel target detection based on supervised metric learning. IEEE Trans. Geosci. Rem. Sens. 52(8), 4955–4965 (2014)CrossRef Zhang, L., Tao, D., Huang, X., Du, B.: Hyperspectral remote sensing image subpixel target detection based on supervised metric learning. IEEE Trans. Geosci. Rem. Sens. 52(8), 4955–4965 (2014)CrossRef
7.
Zurück zum Zitat Blanzieri, E., Melgani, F.: Nearest neighbor classification of remote sensing images with the maximal margin principle. IEEE Trans. Geosci. Rem. Sens. 46(6), 1804–1811 (2008)CrossRef Blanzieri, E., Melgani, F.: Nearest neighbor classification of remote sensing images with the maximal margin principle. IEEE Trans. Geosci. Rem. Sens. 46(6), 1804–1811 (2008)CrossRef
8.
Zurück zum Zitat Ham, J., Chen, Y., et al.: Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans. Geosci. Rem. Sens. 43(3), 492–501 (2005)CrossRef Ham, J., Chen, Y., et al.: Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans. Geosci. Rem. Sens. 43(3), 492–501 (2005)CrossRef
9.
Zurück zum Zitat Cao, F., et al.: Linear vs nonlinear extreme learning machine for spectral-spatial classification of hyperspectral image. Sensors 17, 2603 (2017)CrossRef Cao, F., et al.: Linear vs nonlinear extreme learning machine for spectral-spatial classification of hyperspectral image. Sensors 17, 2603 (2017)CrossRef
10.
Zurück zum Zitat Melgani, F., Bruzzone, L.: Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Rem. Sens. 42(8), 1778–1790 (2004)CrossRef Melgani, F., Bruzzone, L.: Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Rem. Sens. 42(8), 1778–1790 (2004)CrossRef
11.
Zurück zum Zitat Fang, L., et al.: Hyperspectral image classification via multiple-feature-based adaptive sparse representation. IEEE Trans. Instrum. Measur. 66(7), 1646–1657 (2017)CrossRef Fang, L., et al.: Hyperspectral image classification via multiple-feature-based adaptive sparse representation. IEEE Trans. Instrum. Measur. 66(7), 1646–1657 (2017)CrossRef
12.
Zurück zum Zitat Qiao, T., Yang, Z., et al.: Joint bilateral filtering and spectral similarity-based sparse representation: a generic framework for effective feature extraction and data classification in hyperspectral imaging. Pattern Recogn. 77, 316–328 (2017)CrossRef Qiao, T., Yang, Z., et al.: Joint bilateral filtering and spectral similarity-based sparse representation: a generic framework for effective feature extraction and data classification in hyperspectral imaging. Pattern Recogn. 77, 316–328 (2017)CrossRef
13.
Zurück zum Zitat Chen, Y., et al.: Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Observ. Rem. Sens. 7(6), 2094–2107 (2014) Chen, Y., et al.: Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Observ. Rem. Sens. 7(6), 2094–2107 (2014)
14.
Zurück zum Zitat Chen, Y., et al.: Spectral spatial classification of hyperspectral data based on deep belief network. IEEE J. Sel. Top. Appl. Earth Observ. Rem. Sens. 8(6), 1–12 (2015) Chen, Y., et al.: Spectral spatial classification of hyperspectral data based on deep belief network. IEEE J. Sel. Top. Appl. Earth Observ. Rem. Sens. 8(6), 1–12 (2015)
15.
Zurück zum Zitat Chen, Y., et al.: Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Rem. Sens. 54(10), 6262–6251 (2016) Chen, Y., et al.: Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Rem. Sens. 54(10), 6262–6251 (2016)
16.
Zurück zum Zitat Huang, G., Liu, Z., et al.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on CVPR, pp. 2261–2269 (2017) Huang, G., Liu, Z., et al.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on CVPR, pp. 2261–2269 (2017)
17.
Zurück zum Zitat Sheng, W., et al.: Multi-scale Dynamic Graph Convolutional Network for Hyperspectral Image Classification. arXiv:1905.06133 (2019) Sheng, W., et al.: Multi-scale Dynamic Graph Convolutional Network for Hyperspectral Image Classification. arXiv:​1905.​06133 (2019)
19.
Zurück zum Zitat Hu, W., et al.: Deep convolutional neural networks for hyperspectral image classification. J. Sens. 2, 1–12 (2015)CrossRef Hu, W., et al.: Deep convolutional neural networks for hyperspectral image classification. J. Sens. 2, 1–12 (2015)CrossRef
20.
Zurück zum Zitat Li, W., Wu, G., et al.: Hyperspectral image classification using deep pixel-pair features. IEEE Trans. Geosci. Rem. Sens. 55(2), 844–853 (2016)CrossRef Li, W., Wu, G., et al.: Hyperspectral image classification using deep pixel-pair features. IEEE Trans. Geosci. Rem. Sens. 55(2), 844–853 (2016)CrossRef
21.
Zurück zum Zitat Mei, S., et al.: Learning sensor-specific spatial-spectral features of hyperspectral images via convolutional neural networks. IEEE Trans. Geosci. Rem. Sens. 55(8), 4520–4533 (2017)CrossRef Mei, S., et al.: Learning sensor-specific spatial-spectral features of hyperspectral images via convolutional neural networks. IEEE Trans. Geosci. Rem. Sens. 55(8), 4520–4533 (2017)CrossRef
22.
Zurück zum Zitat Fang, L., Liu, Z., Song, W.: Deep hashing neural networks for hyperspectral image feature extraction. IEEE Geosci. Rem. Sens. Lett., 1–5 (2019) Fang, L., Liu, Z., Song, W.: Deep hashing neural networks for hyperspectral image feature extraction. IEEE Geosci. Rem. Sens. Lett., 1–5 (2019)
23.
Zurück zum Zitat Zhong, Z., Li, J., et al.: Spectral-spatial residual network for hyperspectral image classification: a 3-D deep learning framework. IEEE Trans. Geosci. Rem. Sens. 56, 847–858 (2018)CrossRef Zhong, Z., Li, J., et al.: Spectral-spatial residual network for hyperspectral image classification: a 3-D deep learning framework. IEEE Trans. Geosci. Rem. Sens. 56, 847–858 (2018)CrossRef
24.
Zurück zum Zitat Waske, B., et al.: Sensitivity of support vector machines to random feature selection in classification of hyperspectral data. IEEE Trans. Geosci. Rem. Sens. 48(7), 2880–2889 (2010)CrossRef Waske, B., et al.: Sensitivity of support vector machines to random feature selection in classification of hyperspectral data. IEEE Trans. Geosci. Rem. Sens. 48(7), 2880–2889 (2010)CrossRef
25.
Zurück zum Zitat Zhang, H., Li, Y., Zhang, Y., Shen, Q.: Spectral-spatial classification of hyperspectral imagery using a dual-channel convolutional neural network. Rem. Sens. 8, 438–447 (2017) Zhang, H., Li, Y., Zhang, Y., Shen, Q.: Spectral-spatial classification of hyperspectral imagery using a dual-channel convolutional neural network. Rem. Sens. 8, 438–447 (2017)
26.
Zurück zum Zitat Wang, L., Peng, J., Sun, W.: Spatial-spectral squeeze-and-excitation residual network for hyperspectral image classification. Rem. Sens. 11, 884 (2019)CrossRef Wang, L., Peng, J., Sun, W.: Spatial-spectral squeeze-and-excitation residual network for hyperspectral image classification. Rem. Sens. 11, 884 (2019)CrossRef
Metadaten
Titel
Hyperspectral Image Classification via Hierarchical Features Adaptive Fusion Network
verfasst von
Zehui Sun
Qin Xu
Fenglei Li
Yiming Mei
Bin Luo
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-39431-8_29