Skip to main content

2020 | OriginalPaper | Buchkapitel

Hypotheses-Driven Combustion Technology and Design Development Approach Pursued Since Early 1970s

verfasst von : Hukam C. Mongia, Kumud Ajmani, Chih-Jen Sung

Erschienen in: 50 Years of CFD in Engineering Sciences

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The empirical/analytical combustion design methodology practiced since middle 1970s comprises continuously evolving conventional design practice with significantly increased roles played by hypotheses formulation, its direct or indirect verification, semi-analytical models and multidimensional computational tools. Rapid advances in “applicable CFD” and turbulent combustion modeling during the early 1970s with remarkable contributions made by the team led by Prof. Spalding combined with resources (dollars, people, and facilities) provided by industry (Garrett, Allison, GE Aviation, Goodrich, Parker, and Woodward), government (NASA, the US Air Force, Army and Navy) and numerous universities led to formulation and successful applications of empirical/analytical design methodology in several gas turbine combustion technology and design programs. These programs included NASA staged combustion Concept 3 (in 1977), two Army combustor concepts for small engines (1978), 2100, 2400, and 2900 °F temperature rise combustors (1981–1983), the two first product combustors (1986), two near-stoichiometric temperature high-performance combustors (1993), entitlements for ultralow NOx premix/pre-vaporized and partially premixed mixers (1993, 2008), an RQL combustor for the largest turbofan engine (1996), the second-generation lean-dome combustion technology TAPS demonstration (2003) and its product introduction in GEnx (2009), NASA LDI-2 and LDI-3 technology demonstrations in 2014 and 2018, respectively. An overview of these activities along with the most recent CFD simulation and diagnostics activities are described in this chapter as a recognition of 50 Years of CFD in Engineering Sciences that has provided useful insight for advancing combustion technologies and products while simultaneously improving design process efficiency.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Reynolds, R. S., Kuhn, T. W., & Mongia, H. C. (1977). Advanced combustor analytical design procedure and its application in the design and development testing of a premix/prevaporized combustion system. In 1977 Spring Meeting of the Central States Section of the Combustion Institute. Reynolds, R. S., Kuhn, T. W., & Mongia, H. C. (1977). Advanced combustor analytical design procedure and its application in the design and development testing of a premix/prevaporized combustion system. In 1977 Spring Meeting of the Central States Section of the Combustion Institute.
2.
Zurück zum Zitat Mongia, H. C., & Smith, K. F. (1978). An empirical/analytical design methodology for gas turbine combustor. In AIAA1978-998. Mongia, H. C., & Smith, K. F. (1978). An empirical/analytical design methodology for gas turbine combustor. In AIAA1978-998.
3.
Zurück zum Zitat Bruce, T. W., Mongia, H. C., & Reynolds, R. S. (1979). Combustor design criteria validation Volume I—Element tests and model validation. In USARTL-TR-55A (AD-A0-67657), March 1979. Bruce, T. W., Mongia, H. C., & Reynolds, R. S. (1979). Combustor design criteria validation Volume I—Element tests and model validation. In USARTL-TR-55A (AD-A0-67657), March 1979.
4.
Zurück zum Zitat Mongia, H., Reynolds, R., Coleman, E., & Bruce, T. (1979). Combustor design criteria validation Volume II—Development testing of two full-scale annular gas turbine combustors. In USARTL-TR-55B (AD-A0-67689), March 1979. Mongia, H., Reynolds, R., Coleman, E., & Bruce, T. (1979). Combustor design criteria validation Volume II—Development testing of two full-scale annular gas turbine combustors. In USARTL-TR-55B (AD-A0-67689), March 1979.
5.
Zurück zum Zitat Mongia, H. C., & Reynolds, R. S. (1979). Combustor design criteria validation Volume III—User’s Manual. In USARTL-TR-55C (AD-AO-66793). Mongia, H. C., & Reynolds, R. S. (1979). Combustor design criteria validation Volume III—User’s Manual. In USARTL-TR-55C (AD-AO-66793).
6.
Zurück zum Zitat Danis, A. M., Burrus, D. L., & Mongia, H. C. (1996). Anchored CCD for gas turbine combustor design and data correlation. In ASME1996-GT-143. Danis, A. M., Burrus, D. L., & Mongia, H. C. (1996). Anchored CCD for gas turbine combustor design and data correlation. In ASME1996-GT-143.
7.
Zurück zum Zitat Hura, H. S., Joshi, N. D., & Mongia, H. C. (1998). Dry low emissions premixer CCD modeling and validation. In ASME1998-GT-444. Hura, H. S., Joshi, N. D., & Mongia, H. C. (1998). Dry low emissions premixer CCD modeling and validation. In ASME1998-GT-444.
8.
Zurück zum Zitat Hura, H. S., & Mongia, H. C. (1998). Prediction of NO emissions from a lean dome gas turbine combustor. In AIAA1998-3375. Hura, H. S., & Mongia, H. C. (1998). Prediction of NO emissions from a lean dome gas turbine combustor. In AIAA1998-3375.
9.
Zurück zum Zitat Bahr, D. W., & Gleason, C. C. (1975). Experimental clean combustor program Phase I—Final report. NASA CR-134737. Bahr, D. W., & Gleason, C. C. (1975). Experimental clean combustor program Phase I—Final report. NASA CR-134737.
10.
Zurück zum Zitat Bruce, T. W., Davis, F. G., Kuhn, T. E., & Mongia, H. C. (1977). Pollution reduction technology program small jet aircraft engines phase 1 final report. NASA CR-135214. Bruce, T. W., Davis, F. G., Kuhn, T. E., & Mongia, H. C. (1977). Pollution reduction technology program small jet aircraft engines phase 1 final report. NASA CR-135214.
11.
Zurück zum Zitat Bruce, T. W., Davis, F. G., Kuhn, T. E., & Mongia, H. C. (1978). Pollution reduction technology program small jet aircraft engines phase 2 final report. NASA CR-159415. Bruce, T. W., Davis, F. G., Kuhn, T. E., & Mongia, H. C. (1978). Pollution reduction technology program small jet aircraft engines phase 2 final report. NASA CR-159415.
12.
Zurück zum Zitat Bruce, T. W., Davis, F. G., Kuhn, T. E., & Mongia, H. C. (1981). Pollution reduction technology program small jet aircraft engines phase 3 final report. NASA CR-165386. Bruce, T. W., Davis, F. G., Kuhn, T. E., & Mongia, H. C. (1981). Pollution reduction technology program small jet aircraft engines phase 3 final report. NASA CR-165386.
13.
Zurück zum Zitat Mongia, H. C. (2008). Recent progress in comprehensive modeling of gas turbine combustion. In AIAA2008-1445. Mongia, H. C. (2008). Recent progress in comprehensive modeling of gas turbine combustion. In AIAA2008-1445.
14.
Zurück zum Zitat Mongia, H. C., Coleman, E. B., & Bruce, T. W. (1981). Design and testing of two variable geometry combustors for high altitude propulsion engines. In AIAA1981-1389. Mongia, H. C., Coleman, E. B., & Bruce, T. W. (1981). Design and testing of two variable geometry combustors for high altitude propulsion engines. In AIAA1981-1389.
15.
Zurück zum Zitat Kuhn, T. E., Mongia, H. C., Bruce, T. W., & Buchanan, E. (1982). Small gas turbine augmenter design methodology. In AIAA1982-1179. Kuhn, T. E., Mongia, H. C., Bruce, T. W., & Buchanan, E. (1982). Small gas turbine augmenter design methodology. In AIAA1982-1179.
16.
Zurück zum Zitat Sanborn, J. W., Mongia, H. C., & Kidwell, J. R. (1983). Design of a low-emission combustor for an automotive gas turbine. In AIAA1983-0338. Sanborn, J. W., Mongia, H. C., & Kidwell, J. R. (1983). Design of a low-emission combustor for an automotive gas turbine. In AIAA1983-0338.
17.
Zurück zum Zitat Roesler, T. C., Mongia, H. C., & Stocker, H. L. (1992). Analytical design and demonstration of a low-cost expendable turbine engine combustor. In AIAA1992-3754. Roesler, T. C., Mongia, H. C., & Stocker, H. L. (1992). Analytical design and demonstration of a low-cost expendable turbine engine combustor. In AIAA1992-3754.
18.
Zurück zum Zitat Mongia, H. C. (1993). Application of CFD in combustor design technology. In AGARD CP-536, pp. 12-1/12-18. Mongia, H. C. (1993). Application of CFD in combustor design technology. In AGARD CP-536, pp. 12-1/12-18.
19.
Zurück zum Zitat Mongia, H. C. (2011). Engineering aspects of complex gas turbine combustion mixers Part I: High ΔT. In AIAA2011-0107. Mongia, H. C. (2011). Engineering aspects of complex gas turbine combustion mixers Part I: High ΔT. In AIAA2011-0107.
20.
Zurück zum Zitat Mongia, H. C. (2011). Engineering aspects of complex gas turbine combustion mixers Part II: High T3. In AIAA2011-0106. Mongia, H. C. (2011). Engineering aspects of complex gas turbine combustion mixers Part II: High T3. In AIAA2011-0106.
21.
Zurück zum Zitat Mongia, H. C. (2011). Engineering aspects of complex gas turbine combustion mixers Part III: 30 OPR. In AIAA2011-5525. Mongia, H. C. (2011). Engineering aspects of complex gas turbine combustion mixers Part III: 30 OPR. In AIAA2011-5525.
22.
Zurück zum Zitat Mongia, H. C. (2011). Engineering aspects of complex gas turbine combustion mixers Part IV: Swirl cup. In AIAA2011-5526. Mongia, H. C. (2011). Engineering aspects of complex gas turbine combustion mixers Part IV: Swirl cup. In AIAA2011-5526.
23.
Zurück zum Zitat Joshi, N. D., Mongia, H. C., Leonard, G., Stegmaier, J. W., & Vickers, E. C. (1998). Dry low emissions combustor development. In ASME98-GT-310. Joshi, N. D., Mongia, H. C., Leonard, G., Stegmaier, J. W., & Vickers, E. C. (1998). Dry low emissions combustor development. In ASME98-GT-310.
24.
Zurück zum Zitat Mongia, H. C. (2003). TAPS—A fourth generation propulsion combustor technology for low emissions. In AIAA2003-2657. Mongia, H. C. (2003). TAPS—A fourth generation propulsion combustor technology for low emissions. In AIAA2003-2657.
25.
Zurück zum Zitat Mongia, H. C. (2011). Engineering aspects of complex gas turbine combustion mixers Part V: 40 OPR. In AIAA2011-5527. Mongia, H. C. (2011). Engineering aspects of complex gas turbine combustion mixers Part V: 40 OPR. In AIAA2011-5527.
26.
Zurück zum Zitat Tacina, K. M., Podboy, D. P., He, Z. J., Lee, P., Dam, B., & Mongia, H. C. (2016). A comparison of three second-generation swirl-venturi lean direct injection combustor concepts. In AIAA2016-4891. Tacina, K. M., Podboy, D. P., He, Z. J., Lee, P., Dam, B., & Mongia, H. C. (2016). A comparison of three second-generation swirl-venturi lean direct injection combustor concepts. In AIAA2016-4891.
27.
Zurück zum Zitat Tacina, K. M., Chang, C. T., He, Z. J., Lee, P., Dam, B., & Mongia, H. C. (2014). A second-generation swirl-venturi lean direct injection combustion concept. In AIAA2014-3434. Tacina, K. M., Chang, C. T., He, Z. J., Lee, P., Dam, B., & Mongia, H. C. (2014). A second-generation swirl-venturi lean direct injection combustion concept. In AIAA2014-3434.
28.
Zurück zum Zitat Serag-Eldin, M. A., & Spalding, D. B. (1979). Computations of three-dimensional gas-turbine combustion chamber flows. Journal of Engineering for Gas Turbines and Power, 101, 326–336.CrossRef Serag-Eldin, M. A., & Spalding, D. B. (1979). Computations of three-dimensional gas-turbine combustion chamber flows. Journal of Engineering for Gas Turbines and Power, 101, 326–336.CrossRef
29.
Zurück zum Zitat Mongia, H. C., Reynolds, R. S., & Srinivasan, R. (1986). Multidimensional gas turbine combustion modeling: Applications and limitations. AIAA Journal, 24(6), 890–904.CrossRef Mongia, H. C., Reynolds, R. S., & Srinivasan, R. (1986). Multidimensional gas turbine combustion modeling: Applications and limitations. AIAA Journal, 24(6), 890–904.CrossRef
30.
Zurück zum Zitat Mongia, H. C. (1988). A status report on gas turbine combustion modeling. In AGARD CP-422, pp. 26-1/26-14. Mongia, H. C. (1988). A status report on gas turbine combustion modeling. In AGARD CP-422, pp. 26-1/26-14.
31.
Zurück zum Zitat Mongia, H. C. (2001). A synopsis of gas turbine combustor design methodology evolution of last 25 years. In 15th International Symposium on Air Breathing Engines, ISABE-2001-1086. Mongia, H. C. (2001). A synopsis of gas turbine combustor design methodology evolution of last 25 years. In 15th International Symposium on Air Breathing Engines, ISABE-2001-1086.
32.
Zurück zum Zitat Mongia, H. C. (2001). Gas turbine combustor liner wall temperature calculation methodology. In AIAA2001-3267. Mongia, H. C. (2001). Gas turbine combustor liner wall temperature calculation methodology. In AIAA2001-3267.
33.
Zurück zum Zitat Held, T. J., & Mongia, H. C. (1998). Application of a partially premixed laminar flamelet model to a low emissions gas turbine combustor. In ASME1998-GT-217. Held, T. J., & Mongia, H. C. (1998). Application of a partially premixed laminar flamelet model to a low emissions gas turbine combustor. In ASME1998-GT-217.
34.
Zurück zum Zitat Mongia, H. C. (2004). Perspective of gas turbine combustion modeling. In AIAA2004-0156. Mongia, H. C. (2004). Perspective of gas turbine combustion modeling. In AIAA2004-0156.
35.
Zurück zum Zitat Mongia, H., Krishnaswami, S., & Sreedhar, P. S. V. S. (2007). Comprehensive gas turbine combustion modeling methodology. In Fluent’s International Aerospace CFD Conference, June 18, 2007, Paris. Mongia, H., Krishnaswami, S., & Sreedhar, P. S. V. S. (2007). Comprehensive gas turbine combustion modeling methodology. In Fluent’s International Aerospace CFD Conference, June 18, 2007, Paris.
36.
Zurück zum Zitat Sripathi, M., Krishnaswami, S., Danis, A. M., & Hsieh, S. Y. (2014). Laminar flamelet based NOx predictions for gas turbine combustors. In GT2014-27258. Sripathi, M., Krishnaswami, S., Danis, A. M., & Hsieh, S. Y. (2014). Laminar flamelet based NOx predictions for gas turbine combustors. In GT2014-27258.
37.
Zurück zum Zitat Held, T. J., Mueller, M. A., Li, S. C., & Mongia, H. C. (2001). A data-driven model for NOx, CO and UHC emissions for a dry low emissions gas turbine combustor. In AIAA2001-3425. Held, T. J., Mueller, M. A., Li, S. C., & Mongia, H. C. (2001). A data-driven model for NOx, CO and UHC emissions for a dry low emissions gas turbine combustor. In AIAA2001-3425.
38.
Zurück zum Zitat Stevens, E. J., Held, T. J., & Mongia, H. C. (2003). Swirl cup modeling Part VII: Partially-premixed laminar flamelet model validation and simulation of a single-cup combustor with gaseous n-heptane. In AIAA 2003-0488. Stevens, E. J., Held, T. J., & Mongia, H. C. (2003). Swirl cup modeling Part VII: Partially-premixed laminar flamelet model validation and simulation of a single-cup combustor with gaseous n-heptane. In AIAA 2003-0488.
39.
Zurück zum Zitat Giridharan, M. G., Held, T. J., & Mongia, H. C. (2003). A wet emissions CFD model based on laminar flamelet approach. In ISABE2003-1087. Giridharan, M. G., Held, T. J., & Mongia, H. C. (2003). A wet emissions CFD model based on laminar flamelet approach. In ISABE2003-1087.
40.
Zurück zum Zitat Kim, W. W., Menon, S., & Mongia, H. C. (1999). Large eddy simulations of reacting flow in a dump combustor. Composites Science and Technology, 143, 25–62. Kim, W. W., Menon, S., & Mongia, H. C. (1999). Large eddy simulations of reacting flow in a dump combustor. Composites Science and Technology, 143, 25–62.
41.
Zurück zum Zitat Grinstein, F. F., Young, G., Gutmark, E. J., Hsiao, G., & Mongia, H. (2002). Flow dynamics in a swirl combustor. Journal of Turbulence, 3(30), 1–19. Grinstein, F. F., Young, G., Gutmark, E. J., Hsiao, G., & Mongia, H. (2002). Flow dynamics in a swirl combustor. Journal of Turbulence, 3(30), 1–19.
42.
Zurück zum Zitat Wang, S., Yang, V., Hsiao, G., Hsieh, S. Y., & Mongia, H. C. (2007). Large eddy simulations of gas-turbine swirl injector flow dynamics. Journal of Fluid Mechanics, 583, 99–122.CrossRef Wang, S., Yang, V., Hsiao, G., Hsieh, S. Y., & Mongia, H. C. (2007). Large eddy simulations of gas-turbine swirl injector flow dynamics. Journal of Fluid Mechanics, 583, 99–122.CrossRef
43.
Zurück zum Zitat Srinivasan, R., Reynolds, R., Ball, I., Berry, R., Johnson, K., & Mongia, H. C. (1983). Aerothermal modeling program Phase I final report. NASA CR-168243. Srinivasan, R., Reynolds, R., Ball, I., Berry, R., Johnson, K., & Mongia, H. C. (1983). Aerothermal modeling program Phase I final report. NASA CR-168243.
44.
Zurück zum Zitat Nikjooy, M., Mongia, H. C., Sullivan, J. P., & Murthy, S. N. B. (1993). Flow interaction experiment, aerothermal modeling Phase II final report, Volumes I and II. NASA CR-189192. Nikjooy, M., Mongia, H. C., Sullivan, J. P., & Murthy, S. N. B. (1993). Flow interaction experiment, aerothermal modeling Phase II final report, Volumes I and II. NASA CR-189192.
45.
Zurück zum Zitat Nikjooy, M., Mongia, H. C., McDonell, V. G., & Samuelsen, G. S. (1993). Fuel injector-air swirl characterization, aerothermal modeling Phase II final report, Volumes I and II. NASA CR-189193. Nikjooy, M., Mongia, H. C., McDonell, V. G., & Samuelsen, G. S. (1993). Fuel injector-air swirl characterization, aerothermal modeling Phase II final report, Volumes I and II. NASA CR-189193.
46.
Zurück zum Zitat Danis, A. M., Pritchard, B. A., & Mongia, H. C. (1996). Empirical and semi-empirical correlation of emissions data from modern turbo propulsion gas turbine engines. In ASME1996-GT-86. Danis, A. M., Pritchard, B. A., & Mongia, H. C. (1996). Empirical and semi-empirical correlation of emissions data from modern turbo propulsion gas turbine engines. In ASME1996-GT-86.
47.
Zurück zum Zitat Ren, X., Sung, C. J., & Mongia, H. C. (2018). On lean direct injection research. In Energy for propulsion. Green energy and technology (pp. 3–26). Springer, Singapore. Ren, X., Sung, C. J., & Mongia, H. C. (2018). On lean direct injection research. In Energy for propulsion. Green energy and technology (pp. 3–26). Springer, Singapore.
48.
Zurück zum Zitat Tacina, R., Lee, P., & Wey, C. (2005). A lean-direct-injection combustor using a 9-point swirl-venturi fuel injector. In ISABE2005-1106. Tacina, R., Lee, P., & Wey, C. (2005). A lean-direct-injection combustor using a 9-point swirl-venturi fuel injector. In ISABE2005-1106.
49.
Zurück zum Zitat Ajmani, K., Mongia, H. C., & Lee, P. (2013). Evaluation of CFD best practices for combustor design: Part I—Nonreacting flows. In AIAA2013-1144. Ajmani, K., Mongia, H. C., & Lee, P. (2013). Evaluation of CFD best practices for combustor design: Part I—Nonreacting flows. In AIAA2013-1144.
50.
Zurück zum Zitat Ajmani, K., Mongia, H. C., & Lee, P. (2013). Evaluation of CFD best practices for combustor design: Part II—Reacting flows. In AIAA2013-1143. Ajmani, K., Mongia, H. C., & Lee, P. (2013). Evaluation of CFD best practices for combustor design: Part II—Reacting flows. In AIAA2013-1143.
51.
Zurück zum Zitat Ajmani, K., Mongia, H. C., Lee, P., & Tacina, K. M. (2018). CFD led designs of prefilming injectors for gas turbine combustors. In GT2018-75329. Ajmani, K., Mongia, H. C., Lee, P., & Tacina, K. M. (2018). CFD led designs of prefilming injectors for gas turbine combustors. In GT2018-75329.
52.
Zurück zum Zitat Ajmani, K., Mongia, H. C., Lee, P., & Tacina, K. M. (2018). CFD predictions of N + 3 cycle emissions for a three-cup gas-turbine combustor. In AIAA2018-4957. Ajmani, K., Mongia, H. C., Lee, P., & Tacina, K. M. (2018). CFD predictions of N + 3 cycle emissions for a three-cup gas-turbine combustor. In AIAA2018-4957.
53.
Zurück zum Zitat Mi, X., Zhang, C., Hui, X., Lin, Y., Mongia, H. C., Twarog, K., et al. (2019). Ignition failure modes during ignition kernel propagation in swirl spray flames. In Second Asia and Middle East Forum of the Global Power and Propulsion Society, September 16–18, 2019. Mi, X., Zhang, C., Hui, X., Lin, Y., Mongia, H. C., Twarog, K., et al. (2019). Ignition failure modes during ignition kernel propagation in swirl spray flames. In Second Asia and Middle East Forum of the Global Power and Propulsion Society, September 16–18, 2019.
54.
Zurück zum Zitat Ren, X., Xue, X., Sung, C. J., Brady, K. B., Mongia, H. C., & Lee, P. (2016). The impact of venturi geometry on reacting flows in a swirl-venturi lean direct injection airblast injector. In AIAA2016-4650. Ren, X., Xue, X., Sung, C. J., Brady, K. B., Mongia, H. C., & Lee, P. (2016). The impact of venturi geometry on reacting flows in a swirl-venturi lean direct injection airblast injector. In AIAA2016-4650.
55.
Zurück zum Zitat Ren, X., Xue, X., Sung, C. J., Brady, K. B., & Mongia, H. C. (2018). Fundamental investigations for lowering emissions and improving operability. Propulsion and Power Research, 7(3), 197–204.CrossRef Ren, X., Xue, X., Sung, C. J., Brady, K. B., & Mongia, H. C. (2018). Fundamental investigations for lowering emissions and improving operability. Propulsion and Power Research, 7(3), 197–204.CrossRef
56.
Zurück zum Zitat Ren, X., Xue, X., Brady, K. B., Sung, C. J., & Mongia, H. C. (2019). The impact of swirling flow strength on lean-dome LDI pilot mixers’ operability and emissions. In Experimental thermal and fluid science (in press). Ren, X., Xue, X., Brady, K. B., Sung, C. J., & Mongia, H. C. (2019). The impact of swirling flow strength on lean-dome LDI pilot mixers’ operability and emissions. In Experimental thermal and fluid science (in press).
57.
Zurück zum Zitat Ren, X., Xue, X., Brady, K. B., Sung, C. J., & Mongia, H. C. (2019). Lean-dome pilot mixers’ operability fundamentals. In Innovations in sustainable energy and cleaner environment. Springer, Singapore (in press). Ren, X., Xue, X., Brady, K. B., Sung, C. J., & Mongia, H. C. (2019). Lean-dome pilot mixers’ operability fundamentals. In Innovations in sustainable energy and cleaner environment. Springer, Singapore (in press).
Metadaten
Titel
Hypotheses-Driven Combustion Technology and Design Development Approach Pursued Since Early 1970s
verfasst von
Hukam C. Mongia
Kumud Ajmani
Chih-Jen Sung
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-2670-1_13

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.