Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.03.2015 | Research Paper | Ausgabe 1/2015

EURO Journal on Transportation and Logistics 1/2015

Identification and estimation of latent group-level-effects in infrastructure performance modeling

Zeitschrift:
EURO Journal on Transportation and Logistics > Ausgabe 1/2015
Autoren:
Aditya Medury, Weizeng Zhang, Pablo L. Durango-Cohen

Abstract

As in other panel data analyses, the presence of unobserved heterogeneity is a critical issue in the estimation of infrastructure performance models. In the literature, this issue has been addressed by formulating variable intercept, fixed or random effects models under the assumptions that (1) heterogeneity stems from facility/individual-level effects, and that (2) the coefficients are constant and homogeneous across the population. In contrast, we present mixture regression as a performance modeling framework. The approach relies on the assumption that the underlying population is comprised of a finite set of classes/segments in unknown proportions. The segmentation basis is latent meaning that the criteria to establish the number and type of segments are related to unobserved heterogeneity manifested in facility performance/deterioration. The segments are characterized by a set of commonly specified regression equations, which allows for the identification and estimation of coefficients, i.e., group-level effects, that differ in terms of their level-of-significance, magnitude or sign. We also derive an instance of the Expectation-Maximization Algorithm to estimate the associated parameters, and to assign facilities to the population segments. To illustrate the framework, we analyze the performance of a panel of 131 pavements from the AASHO Road Test. The results suggest both observed and unobserved sources of heterogeneity in the panel. The heterogeneity is captured by differential group-level effects, which we estimate and interpret. We also discuss how these effects can be exploited in the development of resource allocation strategies. We also compare the mixture regression model to established benchmarks.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2015

EURO Journal on Transportation and Logistics 1/2015 Zur Ausgabe

Premium Partner

    Bildnachweise