Skip to main content

2018 | OriginalPaper | Buchkapitel

Identification of Temporal Transition of Functional States Using Recurrent Neural Networks from Functional MRI

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Dynamic functional connectivity analysis provides valuable information for understanding brain functional activity underlying different cognitive processes. Besides sliding window based approaches, a variety of methods have been developed to automatically split the entire functional MRI scan into segments by detecting change points of functional signals to facilitate better characterization of temporally dynamic functional connectivity patterns. However, these methods are based on certain assumptions for the functional signals, such as Gaussian distribution, which are not necessarily suitable for the fMRI data. In this study, we develop a deep learning based framework for adaptively detecting temporally dynamic functional state transitions in a data-driven way without any explicit modeling assumptions, by leveraging recent advances in recurrent neural networks (RNNs) for sequence modeling. Particularly, we solve this problem in an anomaly detection framework with an assumption that the functional profile of one single time point could be reliably predicted based on its preceding profiles within a stable functional state, while large prediction errors would occur around change points of functional states. We evaluate the proposed method using both task and resting-state fMRI data obtained from the human connectome project and experimental results have demonstrated that the proposed change point detection method could effectively identify change points between different task events and split the resting-state fMRI into segments with distinct functional connectivity patterns.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10(3), 186–198 (2009)CrossRef Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10(3), 186–198 (2009)CrossRef
2.
Zurück zum Zitat Calhoun, V.D., et al.: The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron 84(2), 262–274 (2014)CrossRef Calhoun, V.D., et al.: The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron 84(2), 262–274 (2014)CrossRef
3.
Zurück zum Zitat Hutchison, R.M., et al.: Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80, 360–378 (2013)CrossRef Hutchison, R.M., et al.: Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80, 360–378 (2013)CrossRef
4.
Zurück zum Zitat Cribben, I., et al.: Dynamic connectivity regression: determining state-related changes in brain connectivity. Neuroimage 61(4), 907–920 (2012)CrossRef Cribben, I., et al.: Dynamic connectivity regression: determining state-related changes in brain connectivity. Neuroimage 61(4), 907–920 (2012)CrossRef
5.
Zurück zum Zitat Jeong, S.O., Pae, C., Park, H.J.: Connectivity-based change point detection for large-size functional networks. Neuroimage 143, 353–363 (2016)CrossRef Jeong, S.O., Pae, C., Park, H.J.: Connectivity-based change point detection for large-size functional networks. Neuroimage 143, 353–363 (2016)CrossRef
6.
Zurück zum Zitat Zhang, J., et al.: Inferring functional interaction and transition patterns via dynamic Bayesian variable partition models. Hum. Brain Mapp. 35(7), 3314–3331 (2014)CrossRef Zhang, J., et al.: Inferring functional interaction and transition patterns via dynamic Bayesian variable partition models. Hum. Brain Mapp. 35(7), 3314–3331 (2014)CrossRef
7.
Zurück zum Zitat Shakil, S., Lee, C.H., Keilholz, S.D.: Evaluation of sliding window correlation performance for characterizing dynamic functional connectivity and brain states. Neuroimage 133, 111–128 (2016)CrossRef Shakil, S., Lee, C.H., Keilholz, S.D.: Evaluation of sliding window correlation performance for characterizing dynamic functional connectivity and brain states. Neuroimage 133, 111–128 (2016)CrossRef
8.
Zurück zum Zitat Hindriks, R., et al.: Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI? Neuroimage 127, 242–256 (2016)CrossRef Hindriks, R., et al.: Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI? Neuroimage 127, 242–256 (2016)CrossRef
9.
Zurück zum Zitat Samdin, S.B., et al.: A unified estimation framework for state-related changes in effective brain connectivity. IEEE Trans. Biomed. Eng. 64(4), 844–858 (2017)CrossRef Samdin, S.B., et al.: A unified estimation framework for state-related changes in effective brain connectivity. IEEE Trans. Biomed. Eng. 64(4), 844–858 (2017)CrossRef
10.
Zurück zum Zitat Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRef Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRef
11.
Zurück zum Zitat Lipton, Z.C., Berkowitz, J., Elkan, C.: A critical review of recurrent neural networks for sequence learning. arXiv preprint arXiv:1506.00019 (2015) Lipton, Z.C., Berkowitz, J., Elkan, C.: A critical review of recurrent neural networks for sequence learning. arXiv preprint arXiv:​1506.​00019 (2015)
12.
Zurück zum Zitat Barch, D.M., et al.: Function in the human connectome: task-fMRI and individual differences in behavior. Neuroimage 80, 169–189 (2013)CrossRef Barch, D.M., et al.: Function in the human connectome: task-fMRI and individual differences in behavior. Neuroimage 80, 169–189 (2013)CrossRef
13.
Zurück zum Zitat Glasser, M.F., et al.: The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105–124 (2013)CrossRef Glasser, M.F., et al.: The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105–124 (2013)CrossRef
14.
Zurück zum Zitat Li, H., Satterthwaite, T.D., Fan, Y.: Large-scale sparse functional networks from resting state fMRI. Neuroimage 156, 1–13 (2017)CrossRef Li, H., Satterthwaite, T.D., Fan, Y.: Large-scale sparse functional networks from resting state fMRI. Neuroimage 156, 1–13 (2017)CrossRef
15.
Zurück zum Zitat Li, H., Satterthwaite, T., Fan, Y.: Identification of subject-specific brain functional networks using a collaborative sparse nonnegative matrix decomposition method. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI) (2016) Li, H., Satterthwaite, T., Fan, Y.: Identification of subject-specific brain functional networks using a collaborative sparse nonnegative matrix decomposition method. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI) (2016)
16.
Zurück zum Zitat Abadi, M., et al.: TensorFlow: A System for Large-Scale Machine Learning (2016) Abadi, M., et al.: TensorFlow: A System for Large-Scale Machine Learning (2016)
17.
18.
Zurück zum Zitat Cai, T., Liu, W., Xia, Y.: Two-sample covariance matrix testing and support recovery in high-dimensional and sparse settings. J. Am. Stat. Assoc. 108(501), 265–277 (2013)MathSciNetCrossRef Cai, T., Liu, W., Xia, Y.: Two-sample covariance matrix testing and support recovery in high-dimensional and sparse settings. J. Am. Stat. Assoc. 108(501), 265–277 (2013)MathSciNetCrossRef
Metadaten
Titel
Identification of Temporal Transition of Functional States Using Recurrent Neural Networks from Functional MRI
verfasst von
Hongming Li
Yong Fan
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-030-00931-1_27