Skip to main content

2017 | OriginalPaper | Buchkapitel

Identifying Associations Between Brain Imaging Phenotypes and Genetic Factors via a Novel Structured SCCA Approach

verfasst von : Lei Du, Tuo Zhang, Kefei Liu, Jingwen Yan, Xiaohui Yao, Shannon L. Risacher, Andrew J. Saykin, Junwei Han, Lei Guo, Li Shen, for the Alzheimer’s Disease Neuroimaging Initiative

Erschienen in: Information Processing in Medical Imaging

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Brain imaging genetics attracts more and more attention since it can reveal associations between genetic factors and the structures or functions of human brain. Sparse canonical correlation analysis (SCCA) is a powerful bi-multivariate association identification technique in imaging genetics. There have been many SCCA methods which could capture different types of structured imaging genetic relationships. These methods either use the group lasso to recover the group structure, or employ the graph/network guided fused lasso to find out the network structure. However, the group lasso methods have limitation in generalization because of the incomplete or unavailable prior knowledge in real world. The graph/network guided methods are sensitive to the sign of the sample correlation which may be incorrectly estimated. We introduce a new SCCA model using a novel graph guided pairwise group lasso penalty, and propose an efficient optimization algorithm. The proposed method has a strong upper bound for the grouping effect for both positively and negatively correlated variables. We show that our method performs better than or equally to two state-of-the-art SCCA methods on both synthetic and real neuroimaging genetics data. In particular, our method identifies stronger canonical correlations and captures better canonical loading profiles, showing its promise for revealing biologically meaningful imaging genetic associations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Each \(u_i\) can be solved with \(u_j\)’s (\(j \ne i\)) fixed (i.e., we use \(u_j^t\) to approximate \(u_j^{t+1}\) in C), thus \(u_j\)’s do not contribute to the optimization of \(u_i\) [9].
 
2
Note that an element of diagonal matrix \(\mathbf {D}_1\) will nonexist if \(\sqrt{u_i^2+u_{k_1}^2}=0\). We handle this issue by regularizing it as \(\sqrt{u_i^2+u_{k_1}^2+\zeta }\) with \(\zeta \) being a tiny positive number. Then the objective function regarding \(\mathbf {u}\) becomes \(\mathbf {\tilde{\mathcal {L}}(u)} = \sum _{i=1}^p (-u_i \mathbf {x}_{i}^T \mathbf {Y} \mathbf {v} + \lambda _1\sum _{k_1}\sqrt{u_i^2+u_{k_1}^2+\zeta } +\frac{\gamma _1}{2}||\mathbf {x}_{i}u_i||_{2}^{2})\). We can prove that \(\tilde{\mathcal {L}}(\mathbf {u})\) will reduce to the original problem (3) when \(\zeta \) approaching zero. Likewise, \(\sqrt{v_j^2+v_{k_2}^2}=0\) can be regularized by the same method.
 
Literatur
1.
Zurück zum Zitat Chen, J., Bushman, F.D., Lewis, J.D., Wu, G.D., Li, H.: Structure-constrained sparse canonical correlation analysis with an application to microbiome data analysis. Biostatistics 14(2), 244–258 (2013)CrossRef Chen, J., Bushman, F.D., Lewis, J.D., Wu, G.D., Li, H.: Structure-constrained sparse canonical correlation analysis with an application to microbiome data analysis. Biostatistics 14(2), 244–258 (2013)CrossRef
2.
Zurück zum Zitat Chen, X., Liu, H.: An efficient optimization algorithm for structured sparse CCA, with applications to eQTL mapping. Stat. Biosci. 4(1), 3–26 (2012)CrossRef Chen, X., Liu, H.: An efficient optimization algorithm for structured sparse CCA, with applications to eQTL mapping. Stat. Biosci. 4(1), 3–26 (2012)CrossRef
3.
Zurück zum Zitat Chen, X., Liu, H., Carbonell, J.G.: Structured sparse canonical correlation analysis. In: AISTATS (2012) Chen, X., Liu, H., Carbonell, J.G.: Structured sparse canonical correlation analysis. In: AISTATS (2012)
4.
Zurück zum Zitat Du, L., Huang, H., Yan, J., Kim, S., Risacher, S.L., Inlow, M., Moore, J.H., Saykin, A.J., Shen, L.: Structured sparse canonical correlation analysis for brain imaging genetics: an improved GraphNet method. Bioinformatics 32(10), 1544–1551 (2016)CrossRef Du, L., Huang, H., Yan, J., Kim, S., Risacher, S.L., Inlow, M., Moore, J.H., Saykin, A.J., Shen, L.: Structured sparse canonical correlation analysis for brain imaging genetics: an improved GraphNet method. Bioinformatics 32(10), 1544–1551 (2016)CrossRef
5.
Zurück zum Zitat Du, L., Huang, H., Yan, J., Kim, S., Risacher, S.L., Inlow, M., Moore, J.H., Saykin, A.J., Shen, L.: Structured sparse CCA for brain imaging genetics via graph OSCAR. BMC Syst. Biol. 10(Suppl. 3), 335–345 (2016) Du, L., Huang, H., Yan, J., Kim, S., Risacher, S.L., Inlow, M., Moore, J.H., Saykin, A.J., Shen, L.: Structured sparse CCA for brain imaging genetics via graph OSCAR. BMC Syst. Biol. 10(Suppl. 3), 335–345 (2016)
6.
Zurück zum Zitat Du, L., et al.: A novel structure-aware sparse learning algorithm for brain imaging genetics. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8675, pp. 329–336. Springer, Cham (2014). doi:10.1007/978-3-319-10443-0_42 Du, L., et al.: A novel structure-aware sparse learning algorithm for brain imaging genetics. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8675, pp. 329–336. Springer, Cham (2014). doi:10.​1007/​978-3-319-10443-0_​42
7.
Zurück zum Zitat Du, L., et al.: GN-SCCA: GraphNet based sparse canonical correlation analysis for brain imaging genetics. In: Guo, Y., Friston, K., Aldo, F., Hill, S., Peng, H. (eds.) BIH 2015. LNCS, vol. 9250, pp. 275–284. Springer, Cham (2015). doi:10.1007/978-3-319-23344-4_27 CrossRef Du, L., et al.: GN-SCCA: GraphNet based sparse canonical correlation analysis for brain imaging genetics. In: Guo, Y., Friston, K., Aldo, F., Hill, S., Peng, H. (eds.) BIH 2015. LNCS, vol. 9250, pp. 275–284. Springer, Cham (2015). doi:10.​1007/​978-3-319-23344-4_​27 CrossRef
8.
Zurück zum Zitat Du, L., Zhang, T., Liu, K., Yao, X., Yan, J., Risacher, S.L., Guo, L., Saykin, A.J., Shen, L.: Sparse canonical correlation analysis via truncated \(\ell _1\)-norm with application to brain imaging genetics. In: BIBM, pp. 707–711. IEEE Computer Society (2016) Du, L., Zhang, T., Liu, K., Yao, X., Yan, J., Risacher, S.L., Guo, L., Saykin, A.J., Shen, L.: Sparse canonical correlation analysis via truncated \(\ell _1\)-norm with application to brain imaging genetics. In: BIBM, pp. 707–711. IEEE Computer Society (2016)
9.
Zurück zum Zitat Friedman, J.H., Hastie, T., Hofling, H., Tibshirani, R.: Pathwise coordinate optimization. Ann. Appl. Stat. 1(2), 302–332 (2007)MathSciNetCrossRefMATH Friedman, J.H., Hastie, T., Hofling, H., Tibshirani, R.: Pathwise coordinate optimization. Ann. Appl. Stat. 1(2), 302–332 (2007)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Gorski, J., Pfeuffer, F., Klamroth, K.: Biconvex sets and optimization with biconvex functions: a survey and extensions. Math. Methods Oper. Res. 66(3), 373–407 (2007)MathSciNetCrossRefMATH Gorski, J., Pfeuffer, F., Klamroth, K.: Biconvex sets and optimization with biconvex functions: a survey and extensions. Math. Methods Oper. Res. 66(3), 373–407 (2007)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Kim, S., Swaminathan, S., Inlow, M., Risacher, S.L., Nho, K., Shen, L., Foroud, T.M., Petersen, R.C., Aisen, P.S., Soares, H., et al.: Influence of genetic variation on plasma protein levels in older adults using a multi-analyte panel. PLoS One 8(7), e70269 (2013)CrossRef Kim, S., Swaminathan, S., Inlow, M., Risacher, S.L., Nho, K., Shen, L., Foroud, T.M., Petersen, R.C., Aisen, P.S., Soares, H., et al.: Influence of genetic variation on plasma protein levels in older adults using a multi-analyte panel. PLoS One 8(7), e70269 (2013)CrossRef
12.
Zurück zum Zitat Potkin, S.G., Turner, J.A., Guffanti, G., Lakatos, A., Torri, F., Keator, D.B., Macciardi, F.: Genome-wide strategies for discovering genetic influences on cognition and cognitive disorders: methodological considerations. Cognit. Neuropsychiatry 14(4–5), 391–418 (2009)CrossRef Potkin, S.G., Turner, J.A., Guffanti, G., Lakatos, A., Torri, F., Keator, D.B., Macciardi, F.: Genome-wide strategies for discovering genetic influences on cognition and cognitive disorders: methodological considerations. Cognit. Neuropsychiatry 14(4–5), 391–418 (2009)CrossRef
13.
Zurück zum Zitat Saykin, A.J., Shen, L., Yao, X., Kim, S., Nho, K., Risacher, S.L., Ramanan, V.K., Foroud, T.M., Faber, K.M., Sarwar, N., et al.: Genetic studies of quantitative MCI and AD phenotypes in ADNI: progress, opportunities, and plans. Alzheimer’s Dement. 11(7), 792–814 (2015)CrossRef Saykin, A.J., Shen, L., Yao, X., Kim, S., Nho, K., Risacher, S.L., Ramanan, V.K., Foroud, T.M., Faber, K.M., Sarwar, N., et al.: Genetic studies of quantitative MCI and AD phenotypes in ADNI: progress, opportunities, and plans. Alzheimer’s Dement. 11(7), 792–814 (2015)CrossRef
14.
Zurück zum Zitat Shen, L., Kim, S., Risacher, S.L., Nho, K., Swaminathan, S., West, J.D., Foroud, T., Pankratz, N., Moore, J.H., Sloan, C.D., et al.: Whole genome association study of brain-wide imaging phenotypes for identifying quantitative trait loci in MCI and AD: a study of the ADNI cohort. Neuroimage 53(3), 1051–1063 (2010)CrossRef Shen, L., Kim, S., Risacher, S.L., Nho, K., Swaminathan, S., West, J.D., Foroud, T., Pankratz, N., Moore, J.H., Sloan, C.D., et al.: Whole genome association study of brain-wide imaging phenotypes for identifying quantitative trait loci in MCI and AD: a study of the ADNI cohort. Neuroimage 53(3), 1051–1063 (2010)CrossRef
15.
Zurück zum Zitat Shen, L., Thompson, P.M., Potkin, S.G., Bertram, L., Farrer, L.A., Foroud, T.M., Green, R.C., Hu, X., Huentelman, M.J., Kim, S., et al.: Genetic analysis of quantitative phenotypes in AD and MCI: imaging, cognition and biomarkers. Brain Imaging Behav. 8(2), 183–207 (2014)CrossRef Shen, L., Thompson, P.M., Potkin, S.G., Bertram, L., Farrer, L.A., Foroud, T.M., Green, R.C., Hu, X., Huentelman, M.J., Kim, S., et al.: Genetic analysis of quantitative phenotypes in AD and MCI: imaging, cognition and biomarkers. Brain Imaging Behav. 8(2), 183–207 (2014)CrossRef
16.
Zurück zum Zitat Witten, D.M., Tibshirani, R., Hastie, T.: A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics 10(3), 515–534 (2009)CrossRef Witten, D.M., Tibshirani, R., Hastie, T.: A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics 10(3), 515–534 (2009)CrossRef
17.
Zurück zum Zitat Yang, S., Yuan, L., Lai, Y.C., Shen, X., Wonka, P., Ye, J.: Feature grouping and selection over an undirected graph. In: KDD, pp. 922–930. ACM (2012) Yang, S., Yuan, L., Lai, Y.C., Shen, X., Wonka, P., Ye, J.: Feature grouping and selection over an undirected graph. In: KDD, pp. 922–930. ACM (2012)
18.
Zurück zum Zitat Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. Royal Stat. Soc.: Ser. B (Stat. Methodol.) 68(1), 49–67 (2006)MathSciNetCrossRefMATH Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. Royal Stat. Soc.: Ser. B (Stat. Methodol.) 68(1), 49–67 (2006)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. Royal Stat. Soc.: Ser. B (Stat. Methodol.) 67(2), 301–320 (2005)MathSciNetCrossRefMATH Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. Royal Stat. Soc.: Ser. B (Stat. Methodol.) 67(2), 301–320 (2005)MathSciNetCrossRefMATH
Metadaten
Titel
Identifying Associations Between Brain Imaging Phenotypes and Genetic Factors via a Novel Structured SCCA Approach
verfasst von
Lei Du
Tuo Zhang
Kefei Liu
Jingwen Yan
Xiaohui Yao
Shannon L. Risacher
Andrew J. Saykin
Junwei Han
Lei Guo
Li Shen
for the Alzheimer’s Disease Neuroimaging Initiative
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-59050-9_43