Skip to main content
Erschienen in: Environmental Earth Sciences 6/2014

01.03.2014 | Thematic Issue

Identifying influencing wells for gradient estimation in the confined portion of the Gulf Coast aquifer near Kingsville, TX

verfasst von: Venkatesh Uddameri, Sreeram Singaraju, E. Annette Hernandez

Erschienen in: Environmental Earth Sciences | Ausgabe 6/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hydraulic gradient is a fundamental aquifer characteristic required to estimate groundwater flow and quantify advective fluxes of pollutants. Graphical and local estimation schemes using potentiometric head information from three or four wells are used to compute hydraulic gradients but suffer from imprecision and subjectivity. The use of linear regression is recommended when hydraulic head data from a groundwater monitoring network consisting of several wells are available. In such cases, statistical influence analysis can be carried out to evaluate how each well within the network impacts the gradient estimate. A suite of five metrics, namely—(1) the hat-values, (2) studentized residuals, (3) Cook’s distance, (4) DFBETAs and (5) Covariance ratio (COVRATIO) are used in this study to identify influential wells within a regional groundwater monitoring network in Kleberg County, TX. The hat-values indicated that the groundwater network was reasonably well balanced and no well exerted an undue influence on the regression. The studentized residuals and Cook’s distance indicated the wells with the highest influence on the regression predictions were those that were close to high groundwater production centers or affected by coastal-aquifer interactions. However, the wells in the proximity of the production centers had the highest impact on the estimated gradient values as ascertained using DFBETAs. The covariance ratio which indicates the sensitivity of a monitoring well on the estimated standard error of regression was noted to be significant at most wells within the network. Therefore, networks seeking to address changes in groundwater gradients due to climate and anthropogenic influences need to be denser than those used to ascertain synoptic gradient estimates alone. The magnitude of the groundwater velocity was greatly underestimated when the influential wells were excluded from the network. The direction of flow was affected to a lesser extent, but a complete gradient reversal was noted when the network consisted of only four peripheral wells. The influence analysis therefore provides a valuable tool to assess the importance of individual wells within a monitoring network and can therefore be useful when existing networks are to be pruned due to fiscal constraints.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abriola LM, Pinder GF (1982) Calculation of velocity in three space dimensions from hydraulic head measurements. Ground Water 20(2):205–213CrossRef Abriola LM, Pinder GF (1982) Calculation of velocity in three space dimensions from hydraulic head measurements. Ground Water 20(2):205–213CrossRef
Zurück zum Zitat Baker E Jr (1979) Stratigraphic and hydrogeologic framework of part of the coastal plain of Texas: Texas Department of Water Resources Report 236. Austin Baker E Jr (1979) Stratigraphic and hydrogeologic framework of part of the coastal plain of Texas: Texas Department of Water Resources Report 236. Austin
Zurück zum Zitat Belsley DA, Kuh E, Welsch RE (2005) Regression diagnostics: identifying influential data and sources of collinearlity. Wiley, Hoboken Belsley DA, Kuh E, Welsch RE (2005) Regression diagnostics: identifying influential data and sources of collinearlity. Wiley, Hoboken
Zurück zum Zitat Bollen KA, Jackman RW (1990) Regression diagnostics: An expository treatment of outliers and influential cases. Modern methods of data analysis 257–291 Bollen KA, Jackman RW (1990) Regression diagnostics: An expository treatment of outliers and influential cases. Modern methods of data analysis 257–291
Zurück zum Zitat Chatterjee S, Hadi AS (1986) Influential observations, high leverage points, and outliers in linear regression. Stat Sci 1(3):379–393CrossRef Chatterjee S, Hadi AS (1986) Influential observations, high leverage points, and outliers in linear regression. Stat Sci 1(3):379–393CrossRef
Zurück zum Zitat Chowdhury AH, Wade S, Mace RE, Ridgeway C (2004) Groundwater availability model of the central gulf coast aquifer system: numerical simulations through 1999. Texas Water Development Board, unpublished report Chowdhury AH, Wade S, Mace RE, Ridgeway C (2004) Groundwater availability model of the central gulf coast aquifer system: numerical simulations through 1999. Texas Water Development Board, unpublished report
Zurück zum Zitat Cole BE, Silliman SE (1996) Estimating the horizontal gradient in heterogeneous, unconfined aquifers: comparison of three-point schemes. Ground Water Monit Rem 16(2):84–91CrossRef Cole BE, Silliman SE (1996) Estimating the horizontal gradient in heterogeneous, unconfined aquifers: comparison of three-point schemes. Ground Water Monit Rem 16(2):84–91CrossRef
Zurück zum Zitat Cook DR (1977) Detection of influential observations in linear regression. Technometrics 19:15–18CrossRef Cook DR (1977) Detection of influential observations in linear regression. Technometrics 19:15–18CrossRef
Zurück zum Zitat Dagan G (1986) Statistical theory of groundwater flow and transport: pore to laboratory, laboratory to formation, and formation to regional scale. Water Resour Res 22(9):120S–134SCrossRef Dagan G (1986) Statistical theory of groundwater flow and transport: pore to laboratory, laboratory to formation, and formation to regional scale. Water Resour Res 22(9):120S–134SCrossRef
Zurück zum Zitat Devlin J (2003) A spreadsheet method of estimating best-fit hydraulic gradients using head data from multiple wells. Ground Water 41(3):316–320CrossRef Devlin J (2003) A spreadsheet method of estimating best-fit hydraulic gradients using head data from multiple wells. Ground Water 41(3):316–320CrossRef
Zurück zum Zitat Devlin J, McElwee C (2007) Effects of measurement error on horizontal hydraulic gradient estimates. Ground Water 45(1):62–73CrossRef Devlin J, McElwee C (2007) Effects of measurement error on horizontal hydraulic gradient estimates. Ground Water 45(1):62–73CrossRef
Zurück zum Zitat Diaz-Garcia JA, Gonzalez-Farias G (2004) A note on the Cook’s distance. J Stat Plan Inference 120(1–2):119–136CrossRef Diaz-Garcia JA, Gonzalez-Farias G (2004) A note on the Cook’s distance. J Stat Plan Inference 120(1–2):119–136CrossRef
Zurück zum Zitat Forster CB, Lachmar TE, Oliver DS (1997) Comparison of models for delineating wellhead protection areas in confined to semiconfined aquifers in alluvial basins. Ground Water 35(4):689–697CrossRef Forster CB, Lachmar TE, Oliver DS (1997) Comparison of models for delineating wellhead protection areas in confined to semiconfined aquifers in alluvial basins. Ground Water 35(4):689–697CrossRef
Zurück zum Zitat Fox J (1991) Regression diagnostics: an introduction, vol 79. Sage Publications Incorporated, Newbury Park Fox J (1991) Regression diagnostics: an introduction, vol 79. Sage Publications Incorporated, Newbury Park
Zurück zum Zitat Heath RC (1983) Basic ground-water hydrology, vol 2220. US Geological Survey, Alexandria Heath RC (1983) Basic ground-water hydrology, vol 2220. US Geological Survey, Alexandria
Zurück zum Zitat Kelly WE, Bogardi I (1989) Flow directions with a spreadsheet. Ground Water 27(2):245–247CrossRef Kelly WE, Bogardi I (1989) Flow directions with a spreadsheet. Ground Water 27(2):245–247CrossRef
Zurück zum Zitat McKenna SA, Wahi A (2006) Local hydraulic gradient estimator analysis of long-term monitoring networks. Ground Water 44(5):723–731 McKenna SA, Wahi A (2006) Local hydraulic gradient estimator analysis of long-term monitoring networks. Ground Water 44(5):723–731
Zurück zum Zitat Pinder GF, Celia M, Gray WG (1981) Velocity calculation from randomly located hydraulic heads. Ground Water 19(3):262–264CrossRef Pinder GF, Celia M, Gray WG (1981) Velocity calculation from randomly located hydraulic heads. Ground Water 19(3):262–264CrossRef
Zurück zum Zitat Rice G (2006) Effects of URI’s Kingsville dome mine on groundwater quality. Kleberg County URI Citizen Review Board, Kingsville Rice G (2006) Effects of URI’s Kingsville dome mine on groundwater quality. Kleberg County URI Citizen Review Board, Kingsville
Zurück zum Zitat Ruskauff GJ, Rumbaugh JO III (1996) Incorporating groundwater flow direction and gradient into a flow model calibration. IAHS Publ Ser Proc Rep Intern Assoc Hydrol Sci 237:71–82 Ruskauff GJ, Rumbaugh JO III (1996) Incorporating groundwater flow direction and gradient into a flow model calibration. IAHS Publ Ser Proc Rep Intern Assoc Hydrol Sci 237:71–82
Zurück zum Zitat Shafer G, Baker E Jr (1973) Ground-water resources of Kleberg Kenedy, and southern Jim Wells counties, Texas. TWDB Rept 173, Austin Shafer G, Baker E Jr (1973) Ground-water resources of Kleberg Kenedy, and southern Jim Wells counties, Texas. TWDB Rept 173, Austin
Zurück zum Zitat Silliman S, Frost C (1998) Monitoring hydraulic gradient using three-point estimator. J Environ Eng 124(6):517–523CrossRef Silliman S, Frost C (1998) Monitoring hydraulic gradient using three-point estimator. J Environ Eng 124(6):517–523CrossRef
Zurück zum Zitat Silliman S, Mantz G (2000) The effect of measurement error on estimating the hydraulic gradient in three dimensions. Ground Water 38(1):114–120CrossRef Silliman S, Mantz G (2000) The effect of measurement error on estimating the hydraulic gradient in three dimensions. Ground Water 38(1):114–120CrossRef
Zurück zum Zitat Stevens JP (1984) Outliers and influential data points in regression analysis. Psychol Bull 95(2):334–344CrossRef Stevens JP (1984) Outliers and influential data points in regression analysis. Psychol Bull 95(2):334–344CrossRef
Zurück zum Zitat Uddameri V, Kuchanur M (2007) Simulation-optimization approach to assess groundwater availability in Refugio County, TX. Environ Geol 51(6):921–929CrossRef Uddameri V, Kuchanur M (2007) Simulation-optimization approach to assess groundwater availability in Refugio County, TX. Environ Geol 51(6):921–929CrossRef
Metadaten
Titel
Identifying influencing wells for gradient estimation in the confined portion of the Gulf Coast aquifer near Kingsville, TX
verfasst von
Venkatesh Uddameri
Sreeram Singaraju
E. Annette Hernandez
Publikationsdatum
01.03.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Environmental Earth Sciences / Ausgabe 6/2014
Print ISSN: 1866-6280
Elektronische ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-013-2903-0

Weitere Artikel der Ausgabe 6/2014

Environmental Earth Sciences 6/2014 Zur Ausgabe