Skip to main content
Erschienen in: Environmental Earth Sciences 21/2017

01.11.2017 | Original Article

Identifying sources of soil classes variations with digital soil mapping approaches in the Shahrekord plain, Iran

verfasst von: Zohreh Mosleh, Mohammad Hassan Salehi, Azam Jafari, Isa Esfandiarpoor Borujeni, Abdolmohammad Mehnatkesh

Erschienen in: Environmental Earth Sciences | Ausgabe 21/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Mapping the spatial distribution of soil classes is useful for proper soil and land-use management. This study investigates the ability of different digital soil mapping (DSM) approaches to predict taxonomic classes up to the family level in the Shahrekord plain of Chaharmahal-Va-Bakhtiari province, Iran. A total of 120 pedons were dug at various map units of a semi-detailed soil map with 750-m intervals. After pedons description, soil samples were taken from different genetic horizons. Based on the pedon descriptions and soil analytical data, pedons were classified up to the family level. Different machine learning techniques such as artificial neural networks, boosted regression tree, random forest and multinomial logistic regression were used to test the predictive power for mapping the soil classes. Overall accuracy (OA), adjusted kappa index and brier scores (BS) were used to determine the accuracy of the prediction. The model with the highest OA (i.e., the highest adjusted kappa) and the lowest BS values was considered as the most accurate model for each soil taxonomic level. Results showed that the different models had the same ability for the prediction of the soil classes across all taxonomic levels while a considerable decreasing trend was observed for their accuracy at subgroup and family levels. The terrain attributes were the most important environmental covariates to predict the soil classes in all taxonomic levels, but they could not display the soil variation entirely. This shows that the unexplained variations are controlled by unobserved variations in environment, which can be due to management over the time. Results suggest that the DSM approaches have not enough prediction accuracy for the soil classes at lower taxonomic levels that focus on the soil properties affecting land use and management. Further studies may still be required to distinguish new environmental covariates and introduce new tools to capture the complex nature of soils.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Behrens T, Forster H, Scholten T, Steinrucken U, Spies ED, Goldschmitt M (2005) Digital soil mapping using artificial neural networks. J Plant Nutr Soil Sci 168:21–33CrossRef Behrens T, Forster H, Scholten T, Steinrucken U, Spies ED, Goldschmitt M (2005) Digital soil mapping using artificial neural networks. J Plant Nutr Soil Sci 168:21–33CrossRef
Zurück zum Zitat Behrens T, Zhu AX, Schmidt K, Scholten T (2010) Multi-scale digital terrain analysis and feature selection for digital soil mapping. Geoderma 155:175–185CrossRef Behrens T, Zhu AX, Schmidt K, Scholten T (2010) Multi-scale digital terrain analysis and feature selection for digital soil mapping. Geoderma 155:175–185CrossRef
Zurück zum Zitat Boettinger JL, Ramsey RD, Bodily JM, Cole NJ, Kienast-Brown S, Nield SJ, Saunders AM, Stum AK (2008) Landsat spectral data for digital soil mapping. In: Hartemink AE (ed) Digital soil mapping with limited data. Springer, Berlin, pp 193–203CrossRef Boettinger JL, Ramsey RD, Bodily JM, Cole NJ, Kienast-Brown S, Nield SJ, Saunders AM, Stum AK (2008) Landsat spectral data for digital soil mapping. In: Hartemink AE (ed) Digital soil mapping with limited data. Springer, Berlin, pp 193–203CrossRef
Zurück zum Zitat Brungard CW, Boettinger JL, Duniway MC, Wills SA, EdwardsJr TC (2015) Machine learning for predicting soil classes in three semi-arid landscapes. Geoderma 239–240:68–83CrossRef Brungard CW, Boettinger JL, Duniway MC, Wills SA, EdwardsJr TC (2015) Machine learning for predicting soil classes in three semi-arid landscapes. Geoderma 239–240:68–83CrossRef
Zurück zum Zitat Bui EN, Moran CJ (2003) A strategy to fill gaps in soil survey over large spatial extents: an example from the Murray–Darling basin of Australia. Geoderma 111:21–44CrossRef Bui EN, Moran CJ (2003) A strategy to fill gaps in soil survey over large spatial extents: an example from the Murray–Darling basin of Australia. Geoderma 111:21–44CrossRef
Zurück zum Zitat Byrt T, Bishop J, Carling JB (1993) Bias, prevalence and kappa. J Clin Epidemiol 46:423–429CrossRef Byrt T, Bishop J, Carling JB (1993) Bias, prevalence and kappa. J Clin Epidemiol 46:423–429CrossRef
Zurück zum Zitat Carre F, McBratney A, Mayr T, Montanarella L (2007) Digital soil assessments: beyond DSM. Geoderma 142:69–79CrossRef Carre F, McBratney A, Mayr T, Montanarella L (2007) Digital soil assessments: beyond DSM. Geoderma 142:69–79CrossRef
Zurück zum Zitat Congalton R (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37:35–46CrossRef Congalton R (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37:35–46CrossRef
Zurück zum Zitat Congalton RG, Green K (1998) Assessing the accuracy of remotely sensed data: principles and practices. CRC/Taylor & Francis, Boca RatonCrossRef Congalton RG, Green K (1998) Assessing the accuracy of remotely sensed data: principles and practices. CRC/Taylor & Francis, Boca RatonCrossRef
Zurück zum Zitat Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813CrossRef Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813CrossRef
Zurück zum Zitat Finke PA (2012) On digital soil assessment with models and the pedometrics agenda. Geoderma 171–172:3–15CrossRef Finke PA (2012) On digital soil assessment with models and the pedometrics agenda. Geoderma 171–172:3–15CrossRef
Zurück zum Zitat Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29:1189–1232CrossRef Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29:1189–1232CrossRef
Zurück zum Zitat Gee GW, Bauder JW (1986) Particle size analysis. In: Klute A (ed) Methods of soil analysis. Am Soc Agron, Madison, pp 383–411 Gee GW, Bauder JW (1986) Particle size analysis. In: Klute A (ed) Methods of soil analysis. Am Soc Agron, Madison, pp 383–411
Zurück zum Zitat Hengl T, Toomanian N, Reuter HI, Malakouti MJ (2007) Methods to interpolate soil categorical variables from profile observations: lessons from Iran. Geoderma 140:417–427CrossRef Hengl T, Toomanian N, Reuter HI, Malakouti MJ (2007) Methods to interpolate soil categorical variables from profile observations: lessons from Iran. Geoderma 140:417–427CrossRef
Zurück zum Zitat Jafari A, Finke PA, Van deWauw J, Ayoubi S, Khademi H (2012) Spatial prediction of USDA-great soil groups in the arid Zarand region, Iran: comparing logistic regression approaches to predict diagnostic horizons and soil types. Eur J Soil Sci 63:284–298CrossRef Jafari A, Finke PA, Van deWauw J, Ayoubi S, Khademi H (2012) Spatial prediction of USDA-great soil groups in the arid Zarand region, Iran: comparing logistic regression approaches to predict diagnostic horizons and soil types. Eur J Soil Sci 63:284–298CrossRef
Zurück zum Zitat Jafari A, Ayoubi S, Khademi H, Finke PA, Toomanian N (2013) Selection of a taxonomic level for soil mapping using diversity and map purity indices: a case study from an Iranian arid region. Geomorphology 201:86–97CrossRef Jafari A, Ayoubi S, Khademi H, Finke PA, Toomanian N (2013) Selection of a taxonomic level for soil mapping using diversity and map purity indices: a case study from an Iranian arid region. Geomorphology 201:86–97CrossRef
Zurück zum Zitat Kempen B, Brus DJ, Heuvelink GBM, Stoorvogel JJ (2009) Updating the 1:50,000 Dutch soil map using legacy soil data: a multinomial logistic regression approach. Geoderma 151:311–326CrossRef Kempen B, Brus DJ, Heuvelink GBM, Stoorvogel JJ (2009) Updating the 1:50,000 Dutch soil map using legacy soil data: a multinomial logistic regression approach. Geoderma 151:311–326CrossRef
Zurück zum Zitat Kovacevic M, Bajat B, Gajic B (2010) Soil type classification and estimation of soil properties using support vector machines. Geoderma 154:340–347CrossRef Kovacevic M, Bajat B, Gajic B (2010) Soil type classification and estimation of soil properties using support vector machines. Geoderma 154:340–347CrossRef
Zurück zum Zitat Kuhn M (2008) Building predictive models in R using the caret package. J Stat Soft 28:1–26CrossRef Kuhn M (2008) Building predictive models in R using the caret package. J Stat Soft 28:1–26CrossRef
Zurück zum Zitat Looney SW (2002) Biostatistical methods. Humana Press, Totowa Looney SW (2002) Biostatistical methods. Humana Press, Totowa
Zurück zum Zitat Malone BP, Minasny B, McBratney AB (2017) Using digital soil mapping to update, harmonize and disaggregate legacy soil maps. In: Malone BP (ed) Using R for Digital Soil Mapping. Springer, Switzerland, pp 221–230CrossRef Malone BP, Minasny B, McBratney AB (2017) Using digital soil mapping to update, harmonize and disaggregate legacy soil maps. In: Malone BP (ed) Using R for Digital Soil Mapping. Springer, Switzerland, pp 221–230CrossRef
Zurück zum Zitat McBratney AB, Mendonça Santos ML, Minasny B (2003) On digital soil mapping. Geoderma 117:3–52CrossRef McBratney AB, Mendonça Santos ML, Minasny B (2003) On digital soil mapping. Geoderma 117:3–52CrossRef
Zurück zum Zitat Mosleh Z, Salehi MH, Jafari A, Esfandiarpoor Borujeni I, Mehnatkesh A (2016) The effectiveness of digital soil mapping to predict soil properties over low-relief areas. Environ Monit Assess 188:1–13CrossRef Mosleh Z, Salehi MH, Jafari A, Esfandiarpoor Borujeni I, Mehnatkesh A (2016) The effectiveness of digital soil mapping to predict soil properties over low-relief areas. Environ Monit Assess 188:1–13CrossRef
Zurück zum Zitat Nelson RE (1982) Carbonate and gypsum. In: Page AL (ed) Methods of soil analysis. American Society of Agronomy, Madison, pp 181–197 Nelson RE (1982) Carbonate and gypsum. In: Page AL (ed) Methods of soil analysis. American Society of Agronomy, Madison, pp 181–197
Zurück zum Zitat Olaya VF (2004) A gentle introduction to Saga GIS. User Manual. The SAGA user group, Gottingen Olaya VF (2004) A gentle introduction to Saga GIS. User Manual. The SAGA user group, Gottingen
Zurück zum Zitat Pahlavan Rad MR, Toomanian N, Khormali F, Brungard CW, Komaki CB, Bogaert P (2014) Updating soil survey maps using random forest and conditioned Latin hypercube sampling in the loess derived soils of northern Iran. Geoderma 232–234:97–106CrossRef Pahlavan Rad MR, Toomanian N, Khormali F, Brungard CW, Komaki CB, Bogaert P (2014) Updating soil survey maps using random forest and conditioned Latin hypercube sampling in the loess derived soils of northern Iran. Geoderma 232–234:97–106CrossRef
Zurück zum Zitat Peters J, De Baets B, Verhoest NE, Samson R, Degroeve S, Becker PD, Huybrechts W (2007) Random forests as a tool for ecohydrological distribution modeling. Ecol Model 207:304–318CrossRef Peters J, De Baets B, Verhoest NE, Samson R, Degroeve S, Becker PD, Huybrechts W (2007) Random forests as a tool for ecohydrological distribution modeling. Ecol Model 207:304–318CrossRef
Zurück zum Zitat Phillips JD (2016) Identifying sources of soil landscape complexity with spatial adjacency graphs. Geoderma 267:58–64CrossRef Phillips JD (2016) Identifying sources of soil landscape complexity with spatial adjacency graphs. Geoderma 267:58–64CrossRef
Zurück zum Zitat Ranst E, Tang H, Groenemmans R, Sinthurahat S (1996) Application of fuzzy logicto land suitability for rubber production in peninsular Thailand. Geoderma 70:1–19CrossRef Ranst E, Tang H, Groenemmans R, Sinthurahat S (1996) Application of fuzzy logicto land suitability for rubber production in peninsular Thailand. Geoderma 70:1–19CrossRef
Zurück zum Zitat Richardson AJ, Wiegand CL (1977) Distinguishing vegetation from soil background information. Photogramm Eng Remote Sens 43:1541–1552 Richardson AJ, Wiegand CL (1977) Distinguishing vegetation from soil background information. Photogramm Eng Remote Sens 43:1541–1552
Zurück zum Zitat Rossiter DG (2000) Methodology for soil resource inventories. Soil Science Division, International institute for Aerospace Survey and Earth Science (ITC). 2nd revised version Rossiter DG (2000) Methodology for soil resource inventories. Soil Science Division, International institute for Aerospace Survey and Earth Science (ITC). 2nd revised version
Zurück zum Zitat Rouse JW, Haas RH, Schell JA, Deering DW (1973) Monitoring vegetation systems in the Great plain with ERTS. In: Third ERTS Symposium, NASA, Scientific and Technical Information Office Rouse JW, Haas RH, Schell JA, Deering DW (1973) Monitoring vegetation systems in the Great plain with ERTS. In: Third ERTS Symposium, NASA, Scientific and Technical Information Office
Zurück zum Zitat Schaetzl RJ, Anderson S (2005) Soils genesis and geomorphology. Cambridge University Press, New YorkCrossRef Schaetzl RJ, Anderson S (2005) Soils genesis and geomorphology. Cambridge University Press, New YorkCrossRef
Zurück zum Zitat Schoeneberger PJ, Wysocki DA, Benham EC, Soil Survey Staff (2012) Field book for describing and sampling soils, 3nd version. Natural Resources Conservation Service. National Soil Survey Center, Lincoln Schoeneberger PJ, Wysocki DA, Benham EC, Soil Survey Staff (2012) Field book for describing and sampling soils, 3nd version. Natural Resources Conservation Service. National Soil Survey Center, Lincoln
Zurück zum Zitat Scull P, Franklin J, Chadwick OA (2005) The application of classification tree analysis to soil type prediction in a desert landscape. Ecol Model 181:1–15CrossRef Scull P, Franklin J, Chadwick OA (2005) The application of classification tree analysis to soil type prediction in a desert landscape. Ecol Model 181:1–15CrossRef
Zurück zum Zitat Soil Survey Staff (2014) Keys to soil taxonomy. 12th edn. USDA-Natural Resources Conservation Service, Washington, DC Soil Survey Staff (2014) Keys to soil taxonomy. 12th edn. USDA-Natural Resources Conservation Service, Washington, DC
Zurück zum Zitat Stum AK, Boettinger JL, White MA, Ramsey RD (2010) Random forests applied as a soil spatial predictive model in Arid Utah. In: Boettinger JL (ed) Digital soil mapping: bridging research, environmental application and operation. Springer, Dordrecht, pp 179–190CrossRef Stum AK, Boettinger JL, White MA, Ramsey RD (2010) Random forests applied as a soil spatial predictive model in Arid Utah. In: Boettinger JL (ed) Digital soil mapping: bridging research, environmental application and operation. Springer, Dordrecht, pp 179–190CrossRef
Zurück zum Zitat Sumner ME, Miller WP (1996) Cation exchange capacity and exchange coefficients. In: Bartels JM (ed) Methods of soil analysis. American Society of Agronomy, Madison, pp 1201–1231 Sumner ME, Miller WP (1996) Cation exchange capacity and exchange coefficients. In: Bartels JM (ed) Methods of soil analysis. American Society of Agronomy, Madison, pp 1201–1231
Zurück zum Zitat Taghizadeh-Mehrjard R, Minasny B, McBratney AB, Triantafilis J, Sarmadian F, Toomanian N (2012) Digital soil mapping of soil classes using decision trees in central Iran. In: Minasny B (ed) Digital soil assessments and beyond: proceedings of the 5th global workshop on digital soil mapping. CRC Press, Sydney, pp 197–202CrossRef Taghizadeh-Mehrjard R, Minasny B, McBratney AB, Triantafilis J, Sarmadian F, Toomanian N (2012) Digital soil mapping of soil classes using decision trees in central Iran. In: Minasny B (ed) Digital soil assessments and beyond: proceedings of the 5th global workshop on digital soil mapping. CRC Press, Sydney, pp 197–202CrossRef
Zurück zum Zitat Taghizadeh-Mehrjardi R, Nabiollahi K, Minasny B, Triantafilis J (2015) Comparing data mining Classifiers to predict spatial distribution of USDA-family soil groups in Baneh region, Iran. Geoderma 253–254:67–77CrossRef Taghizadeh-Mehrjardi R, Nabiollahi K, Minasny B, Triantafilis J (2015) Comparing data mining Classifiers to predict spatial distribution of USDA-family soil groups in Baneh region, Iran. Geoderma 253–254:67–77CrossRef
Zurück zum Zitat Viloria JA, Viloria-Botello A, Pineda MC, Valera A (2016) Digital modelling of landscape and soil in a mountainous region: a neuro-fuzzy approach. Geomorphology 253:199–207CrossRef Viloria JA, Viloria-Botello A, Pineda MC, Valera A (2016) Digital modelling of landscape and soil in a mountainous region: a neuro-fuzzy approach. Geomorphology 253:199–207CrossRef
Zurück zum Zitat Walkley A, Black IA (1934) An examination of Degtjareff method for determining soil organic matter and a proposed modification of chromic acid in soil analysis. Soil Sci Soc Am J 79:459–465 Walkley A, Black IA (1934) An examination of Degtjareff method for determining soil organic matter and a proposed modification of chromic acid in soil analysis. Soil Sci Soc Am J 79:459–465
Zurück zum Zitat Wu J, Ransom M, Kluitenberg G, Nellis M, Seyler H (2001) Land-use management using a soil survey geographic database for Finney County, Kansas. Soil Sci Soc Am J 65:169–177CrossRef Wu J, Ransom M, Kluitenberg G, Nellis M, Seyler H (2001) Land-use management using a soil survey geographic database for Finney County, Kansas. Soil Sci Soc Am J 65:169–177CrossRef
Zurück zum Zitat Zeraatpisheh M, Ayoubi S, Jafari A, Finke P (2017) Comparing the efficiency of digital and conventional soil mapping to predict soil types in a semi-arid region in Iran. Geomorphology 285:186–204CrossRef Zeraatpisheh M, Ayoubi S, Jafari A, Finke P (2017) Comparing the efficiency of digital and conventional soil mapping to predict soil types in a semi-arid region in Iran. Geomorphology 285:186–204CrossRef
Zurück zum Zitat Zinck JA (1989) Physiography and soils. Lecture notes for soil students. Soil Science Division, Soil survey courses subject matter. Enschede Zinck JA (1989) Physiography and soils. Lecture notes for soil students. Soil Science Division, Soil survey courses subject matter. Enschede
Metadaten
Titel
Identifying sources of soil classes variations with digital soil mapping approaches in the Shahrekord plain, Iran
verfasst von
Zohreh Mosleh
Mohammad Hassan Salehi
Azam Jafari
Isa Esfandiarpoor Borujeni
Abdolmohammad Mehnatkesh
Publikationsdatum
01.11.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Environmental Earth Sciences / Ausgabe 21/2017
Print ISSN: 1866-6280
Elektronische ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-017-7100-0

Weitere Artikel der Ausgabe 21/2017

Environmental Earth Sciences 21/2017 Zur Ausgabe